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PREFACE 

The present volume deals with variational methods for the  optimization of motion of aircraft and other 
objects often encountered in modern technology. The  development of aeronautics and astronautics progres- 
sivelyfocuses ever increasing attention on the  determination of optimum flight programs characterized by 
minimum time, minimum fuel consumption, maximum range, minimum cost, etc. Numerous publications 
which appeared in the USSR and i n  t h e  West during t h e  last 20-25 years deal with various aspects of this 
optimization problem. The leading contributions were m a d e  by I. V. Ostoslavskii, D. E. Okhouimskii, A. A. 
Kosmodem' yanskii, and A. Miele. Their work played an  important role in t h e  development of controlled 
flight mechanics; they w e r e  also the first to c o m e  face  to  face  with the  fundamental difficulties that to  this 
da te  plague us in the'solution of modern optimal problems. These difficulties are a result of the complex 
and varied conditions that must be taken into consideration when formulating and solving the various problems. 
The  following factors fall  under this category: 

(restraints on altitude and velocity, on the  overload, angle of attack, engine thrust, etc.); 
1) various inequality restraints a r e  imposed on the  system variables by physical and practical considerations 

2)  one  is required to determine the absolute minimum, rather than a local (or relative) minimum; 
3) the  sought optimal control often does not exist in t h e  class of admissible controls in the  classical for- 

mulation of the problem or, in more general terms, we have to deal with degenerate problems. 
The above features are characteristic of a l l  optimal control problems, and are not specific to  flight 

dynamics. The first approach called for modernizing the 
standard classical methods (transformation of variables, introduction of additional variables, direct analysis 
of variations). The second approach involved more radical measures, i.e., development of new optimal 
principles with logic not affected by the  above considerations. 

It is this second approach that produced the  new optimization methods due  to R. Bellman (dynamic 
programming), L. S. Pontryagin (the maximum principle), and the variational methods which constitute t h e  
basis of our book. 

is divided into six chapters and a Supplement. Chapter I reviews the elements of the  theory of variational 
methods. Unlike the traditional approach, the variational technique also covers the  case when the sought 
optimal control does not exist in the  class of admissible controls and the solution must be derived by construct- 
ing a minimizing sequence. This is a typical case often encountered in modern practice. The fundamental 
theorem of t h e  sufficient conditions of t h e  absolute minimum of a functional is then applied to  reduce the 
problem of functional minimization to the  prohlem of maximum of some function R of the problem variables 
for every fixed value of the  argument. 

Chapter I1 describes in detail a number of particular methods. The equations of Pontryagin's maximum 
principle are derived in 5 2.1, and the reader is acquainted with this method from a new angle. These 
equations are then reinforced with new Conditions of a strong local (relative) minimum. Significantly, these 
conditions are linked with the  classical sufficient conditions of variational calculus. Jacobi's f a m o k  condition 
is seen to b e  equivalent to  t h e  requirement of negative-definiteness of the  second differential of the function R. 

equation is derived as a particular case from the  conditions of the fundamental theorem, and thedifferent forms 
of solution of the  optimal prdblem - synthesis and program - are briefly illustrated. The  complete solution 
for the  synthesis of linear systems is given. The method of approximate synthesis and, primarily, the a priori 
upper-bound estimate of the  solution accuracy are of the greatest practical importance among these topics. 
New methods of this kind are of great value, since t h e  Bellman equation often proves t m  complicated for 
practical application and its exact solution too problematic. 

Chapter 111 considers the  structure and the analysis of degenerate and sliding controls. The treatment 
starts with a description of t h e  construction of a sliding-control minimizing sequence; the  construction is 

The difficulties can b e  overcome in two ways. 

The  monograph presents a systematic review of the authors' results obtained over a number of years. It 

The  important concept of the synthesis of optimal control is also dealt  with in this chapter. Bellman's 

vii 



first described for a simple example and then i n  a more general form, depending on the  properties of the 
function R. The  methods of Pontryagin and Bellman are then generalized to  the case of degenerate solutions. 
The last sections of the  chapter present a new special method particularly suitable for degenerate and sliding 
controls, the  method of multiple maxima. This method is highly effective for flight dynamic problems. 

Also of considerable interest is t h e  theoretical application of this method to the investigation of t h e  
degenerate second variation of the  functional. This approach leads to a natural generalization of a l l  the  
standard conditions of variational calculus, including Jacobi' s global condition, to the case of degenerate 
solutions. 

to illustrate its great potential, in particular, for quali tative analysis of various problems with t h e  purpose of 
deriving "quick" estimates. This is a highly valuable attribute at the  design and synthesis stage, when exact 
solutions are meaningless, insofar as the system parameters have not been fixed. 

of powered flight dynamics. First to be considered is the  elementary problem of the  vertical ascent (descent) 
of a rocket in vacuum. The well-known solution of this problem is derived here as an illustration of the 
applications of the new methods (here, as in most other applications, the  method of multiple maxima is 
employed). The general problem of rocket dynamics in a homogeneous field in a vacuum is then considered. 
The application of the new method leads to  an original treatment of this problem and yields new simple 
equations of optimal motion, with coasting integrals playing the role of variables and the  direction of thrust 
and t ime figuring as controls. 

ascent of an aircraft. It was previously solved by different methods by Cstoslavskii, Egorov, and Miele. 
application of our new method yields a more accurate result; in the case of several extremals (e.g., the 
typical situation in supersonic flight) the transition points between the different extremals are naturally 
der ermined. 

aircraft control on the  ascent section. 
of the optimal problem, but i t  is more t ime-  and labor-consunling than the  construction of t h e  optimal 
program. 

and minimum-heat descent programs are discussed, using various characteristic restraints (on altitude, angle 
of attack, temperature, overload, etc.). 
case, as i t  yields approxilnate optimal solutions (with detailed accuracy estimates) i n  the form of finite ex- 
pressions, without involving the engineer in a tedious and difficult solution of boundary-value problems. 
Note that the sought optimal control is found to be a sliding control for the  angle of attack over a considerable 
length of the  trajectory; i n  practice, it can be realized by a relay control with a moderate switching frequency. 

Chapter VI presents an analog of the optimunl principle for discrete control systems described by finite- 
difference equations. Although the  treatment is purely theoretical, its practical value is self-evident in the 
light of ever increasing computer applications. Optimal problems using differential equations are converted 
into finite-difference schemes for computer solution. 

The Supplement a t  the end of the book is fundamentally different from the  earlier chapters. It will be 
of interest to readers who wish to acquaint themselves with the basic problems of variational calculus and 
with t h e  fundamental ideas that served as a point of departure for this monograph. The Supplenient also 
contains a useful solution of the  problem of maximum-range horizontal flight of an aircraft. 

a number of valuable comments. The authors are also grateful to  the  scientific editor of the book, I. V. 
Ioslovich, for his efforts. 

Reader's comments will be most welcome. Please address a l l  correspondence to "Mashinosrroenie" 
Publishing House, Moscow, K-51,  Petrovka '24. 

This method is st i l l  in the  development stage, but the results summarized in this book are quite sufficient 

T h e  next two chapters deal with applications. Chapter I V  presenrs solutions of a number of problems 

Next to be considered is the  so-called classical problem of flight dynamics, e.g., the problem of powered 
The 

The last section of chapter IV illustrates a detailed construction of an approximate synthesis of optimal 
The synthesis of optimal control is the most desirable form of solution 

This feature is  probably linked with the infrequent use of synthesis solutions in nonlinear systems. 
Chapter V investigates optimal coasting controls of winged aircraft subjected to lift. Minimum-time 

The  method of multiple maxima is again very effective in this 

T h e  authors acknowledge the great help of Acad. A. M. Letov, who reviewed the manuscript and made 

... 
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INTRODUCTION 

Various problems of science and technology often require  choosing 
the best, or the o p t i m u m ,  solution among a se t  of a l l  the possible 
alternative solutions. The mathematical formalism of problems of this  
kind generally operates  with two concepts: the concept of a s e t  and the 
concept of a f u n c t i o n  a 1 defined over a given set .  Examples of s e t s  
a r e  the set  of a l l  r ea l  numbers between 0 and 1, the se t  of all possible 
directions of the thrust  vector of an aircraf t  engine, the se t  of a l l  possible 
t ra jec tor ies  taking an aircraf t  to  a given altitude, etc. 

ass ign a definite number to  each element of the set. 
A f u n c  t i  o n a 1  is said to  be defined over  some set  i f  we know how to  

Consider some simple examples of functionals. 
1. 

2.  

Consider the set of all plane curves. 

Consider a point in the ( x ,  g) plane which may move along any path 

To each curve we assign a 
cer ta in  number - i t s  length. 

between two given points A and 8 so  that i t  has a definite velocity V ( s ,  y)  
a t  every point ( x ,  .y) of the path. 
t o  t r ave r se  that path, we obtain a functional. 

spheric  reentry is a functional which depends on the t ra jectory of the 
space c r  aft. 

The general  formalism of choosing optimum solutions (according to  
cer ta in  "quality" c r i te r ia )opera tes  with a fixed se t  M and a functional 
/(v), vCM, defined over  the elements of this  se t  which character izes  the 
quality of the element v , so that i f  an element v1 is "better" than an 
element v:, in a cer ta in  sense, I ( v l ) < / ( v ~ )  and vice versa .  The problem 
is thus formulated a s  follows: find an element v of the se t  M for  which the 
functional I ( v )  has i t s  minimum value I ( v )  = m .  This problem, however, 
is not always solvable. The set being considered does not always contain 
an element v satisfying the exact equality / ( u ) = m .  For example, the 
function y = a x + b ,  a>O, attains i t s  minimum at  the point x=O on the set of 
the points X between 0 and 1, provided this  se t  is closed, O<x.\<l; the 
minimum is not attained on any point of the se t  i f  it is open, 
slight modification in the statement of the problem eliminates the difficulty. 
The final formulation reads a s  follows: consider a set M and a functional 
I(v) on this  set, v E M .  Find a sequence of elements of the set M, 
{ v , ) c M ,  for  which I (v s )  -m for  s-00. The resulting sequence i s  known 
as a m i n i m i z i n g  s e q u e n c e .  It always exists, in virtue of the 
definition of the exact lower bound m=inf I . The minimal element V may 

be t reated a s  one of such minimizing sequences defined in the form v,=V 
for  a l l  s .  

The length of a curve is thus functional. 

Assigning to  each path of the set  the t ime 

3 .  The maximum surface temperature  of a spacecraft during atmo- 

O<x<l. A 

M 

1 



In what follows, we will dea l  with more  tangible problems: determination 
of the optimal control for  objects described by ordinary differential 
equations or by their  d i scre te  analogs - the finite-difference equations. 
As a preliminary step, we have to  consider in some detail the concept of a 
c o n t r o l l e d  s y s t e m  (o r  c o n t r o l l e d  o b j e c t ) .  

A typical example of a controlled sys tem is provided by an aircraf t .  
The vector equations of motion of the center of mass of an a i rc raf t  in 

an iner t ia l  f rame of reference have the fo rm 

+ -  
where r, V a r e  respectively the radius vector and the velocity vector of the 
center  of mass  of the aircraf t ;  
consumption per  second; F is the resultant vector of a l l  the external forces. 

is generally considered in the wind sys tem of coordinates 141: 

m is the mass ;  (sfis the m a s s  (propellant) 

When solving the equations of flight dynamics, the motion of an aircraf t  

- G sin 01; 

b=--{P [ s i i i (u -y )~osy~+cos (a -~ ) s inps iny~ l -  
mV 

- X sin p sin y, +J'cos y, - Z cos sin yc-G cos 0 ) ;  

{f [s in  (a - y )  sin y,  - cos (a  - pc=- 

- yp)siii (3 cosy,] + X  sill pcos y, +Y s inyc+  
+ z cos p cos y,}; 

1 

mV rns 0 

h=VsinO; m= - P t :  x = V c 0 ~ 9 ,  

where V is the velocity; h the altitude; x the range on the Ear th ' s  surface; 
a the angle 

of attack; [3 the angle of side slip; yc  the angle of bank; 

thrust; G a i rcraf t  weight; X, Y ,  Z the drag, the lift, and the s ide force, 
respectively: 

0 the angle of inclination of the t ra jectory to the local horizon; 

cp the angle between the thrust  vector and the velocity vector; 
$?the angle of yaw; 

P engine 

X=c,(M,  a )  2L%!? S: Y = c , ( M , a ) y  n ( h )  V2 S; 
2 

e ( h ) V 2  s, Z= c, (M, a)  ___ 
2 

where e ( h )  is the density of the atmosphere; 
M is the Mach number, equal to  the rat io  of the flight velocity to  the velocity 
of sound a ( h )  at  the given altitude; cx, cy and cz a r e  the aerodynamic 
coefficients. 

S is the effective wing area ;  

2 



Equations (I. 2) re la te  two essentially different groups of variables.  
variables h, V ,  8 ,  qC, n and m enter (1.2) together with their  f i rs t  deriv- 
atives and thus characterize the s ta te  of the sys tem at any time f ; the 
number of these variables is equal t o  the order  of the system. 

The 
variables a, p, yc, cp, and pf enter  (1.2) without their  derivatives and thus 
act  a s  f ree  variables. 
functions of time, and they determine the solution of the sys tem (the 
behavior of the controlled system) for a given initial state ho, VO, 00, q C o ,  mo. 
Variables of this kind a r e  known a s  c o n t r o l  e l e m e n t s  o r  c o n t r o l s .  

The classification of the variables into phase coordinates and control 
elements is closely linked with the particular choice of the mathematical 
model of the controlled system. 
model (system (I. 2))  provides an insufficiently accurate description of the 
actual behavior of the aircraf t  and it can be improved by supplementing it 
with the equation of the angular motion of the aircraf t  about its center of 
mass ,  In this system, the variables a, p and y c  become phase 
coordinates, and the rudder deflection angles assume the role of control 
elements. On the other hand, in some problems, certain phase coordinates 
may be upgraded to the status of control elements without any detrimental  
effects; this would involve dropping the corresponding differential equations 
f rom the mathematical model. This approach was actually applied by some 
authors 14, 8/ in solving the problems of powered ascent of aircraft ,  when 
the t ra jectory inclination angle 0 was used a s  a control element. 

fur ther  a variety of constraints and conditions on the variables which s t em 
f rom the particular properties of the controlled system. 
typical constraints a r e  imposed on aircraf t  flying in the denser atmospheric 
layers :  the altitude h&O, the angle of attack ailli1, Ba<rrlnns, the dynamic 

head q = ' / ? ~ V % q , , , ~ ~ ,  the total overload N =  - ) /X*( / i , v ,u)  +Y? (h,V,o) 

d N  max, the surface temperature T,(lz, V ,  a ) 9 T w m , ,  . Certain additional 
conditions a r e  also imposed on the initial and the final state of the object. 
Thus, a vehicle is intended to  transport  some payload f rom the point of 
origin ho, no on the ground, where it was at r e s t  (Vo=O), to a c i rcular  orbit 
a t  altitude hl(01=0, V I =  Vci,). The different control programs satisfying a l l  
these requirements will be r e fe r r ed  to  a s  a d m i s s i b l e  a l t e r n a t i v e s .  

The set  of all  admissible control programs D may be identified with the 
set M in the general  formulation. 
f u n c t i o n  a 1 s defined over the set  D : these a r e  integrals taken between 
certain t ime l imits  over some functions of the phase coordinates and control 
elements or functions of initial and final states,  or l inear combinations of 
these s ta tes .  

The 

Such variables a r e  generally known a s  p h a s e c o o r d i n  a t  e s . 
They may be defined quite arbi t rar i ly  a s  certain 

In some problems the mathematical 

In practical  problems, besides differential equations we have to consider 

The following 

1 

G 

We will consider i n t  e g r  a 1  

Examples of such functionals for a i rcraf t  a r e  the flight range 

VcosOdf, the flight duration t l - f o ,  fuel consumption mo--ml, the final 

We a r e  thus dealing with the following general  problem. 
Consider a sys tem of differential equations describing a controlled 

ahitude h l ,  the final velocity V I ,  etc. 

system, 

r i = f ( t  y, UI, (I. 3) 

3 
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where y= (gl, yz, . . . , y " )  is the n -dimensional vector of the phase coor- 
dinates, U =  ( u ' ,  u2, . . . , u r )  is the r -dimensional vector of the control 
elements. 

The variables g, u for every t may take on certain values f rom some set  
V ( t )  defined by the additional constraints 

(Y, u )  c V ( 0 .  (I. 4) 

The projection of this  set  onto the space of the phase coordinates Y at 
every t w i l l  be designated V , ( f ) ,  y e  V , ( t ) ,  and i t s  c r o s s  section for any t and 
y will be designated V,(t, g ) ,  ??e v, , ( f ,  y). 
particular, the boundary conditions 

Expression (I. 4) incorporates, in 

where y(&) =YO, Y ( t l )  =YI. 
In the set  D of the pairs  of vector functions y(t), u ( f )  satisfying the above 

conditions, find a sequence {Qs(t) ,  E s ( t ) >  over which the functional 

goes to i t s  exact lower bound in the set, 

i f  we assume that the least  value of the function I is attained on some 
element Q ( t ) ,  E ( t )  of c lass  D ,  our problem is to  find this element: 

/ ( Q s ( t ) ,  E, ( t ) ) - in f l .  In particular, 
D 

Let us  now consider briefly the generally accepted methods of solving 
problems of this kind. 

Pontryagin' s maximum principle 

Let, for simplicity, the se t  vu be constant (independent of f and y ), the 
boundaryconditions to, f l ,Yo ,  YI  fixed, the se t  V,(t) for any tc(to, f l )  coincide with 
the space Y (there a r e  no constraints on the phase coordinates), and F ( y o ,  yl) = O .  

problem Hamiltonian) 
To solve the problem, we define a function of (2n+r+2) variables (the 

n 

H ( t ,  QO, 4, Y, u )  =z $ i F ( t y  ~7 u )  + + o f o ( t ?  Y, ~ 1 9  (I. 7) 
i = l  

where $= ($1, $2, . . . , I+,,) is an n -dimensional vector, the f i r s t  t e r m  on the 
right is a sca l a r  product of n -dimensional vectors. The so-called adjoint 
sys tem of n differential equations is then added to  the start ing equations: 
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The maximum principle is expressed by the following theorem. 
T h e o r e m  I. 1.  Let ( i j ( t ) .  Z ( t ) )  ED be a solution of the problem, i. e., 

the point of D minimizing the functional f . 
(90, $(f)) which is not identically zero, where 
for  y = i j ( t ) ,  u = E ( t ) ,  $0 is anonpositive constant, suchthat for all  fc [ t o ,  t i]  the 
function H ( t ,  j j ( t ) ,  q0, $(f), u )  attains i t s  absolute maximum on V U  for U = i i  : 

Then there  exists a vector 
$ ( t )  is the solution of (I. 8) 

f-f 0, i ( t ) , + o 7  + ( t ) ,  i ( f ) = s u P  f-f ( t ,T( t ) ,  +o, +(t),[l)=P ( t )  (I. 9) 
U E  vu 

and the function Ct(t) is continuous over [ t o ,  t i]  . 
The proof of this fundamental theorem will be found in 1 6 ,  2, 3 1 .  
Equations (I. 8) -(I. 9) a r e  the necessary conditions for an optimum 

solution i j ( t ) ,  Z ( t ) .  Together with equations (I. 3),  they constitute a sys tem 
of ordinary differential equations of o rde r  2 n ,  closed by the finite relation 
(I. 9); on a given segment [ t o ,  t i]  the solution of this  sys tem ( ~ ( t ) ,  + ( t ) ,  u ( t ) )  
should satisfy 2n boundary conditions which constrain the phase path y(t) to  
pass through given points yo, y, at t imes  to and f ,  , respectively. 

In other words, the maximum principle reduces the optimization problem 
to a boundary-value problem for a sys tem of ordinary differential equations. 

The solution of this boundary-value problem, in general, may prove to  
be different f rom the sought optimum solution, since the equations of the 
maximum principle provide only the necessary conditions of optimality. 
However, if we can be certain that, f i rs t ,  the minimum of the functional 
exis ts  ( in  the set D ) and, second, the solution of the boundary-value 
problem i s  unique, the solution obtained by this method is indeed the 
optimum solution. 

The maximum principle generalizes the classical  optimum conditions 
- the Euler-Lagrange equations and Weie r s t r a s s ' s  condition - t o  the case 
of a closed and bounded set  V,L (these a r e  the conditions mostly encountered 
in practice).  If the set  V,, coincides with the entire space U ,  we have 
f rom (I. 9) 

H ,  ( t ,  G, 9, l i )  =O, (I. 10) 

where H,= ( H u ~ ,  Hue9 . . . , HU,) i s  the vector of the partial  derivatives of 
the function H with respect to the components of the vector u . Equations 
(I .  3), (I .  8), and (I. 10) form a system of canonical Euler-Lagrange equations 
for  the functions y ( t ) ,  $ ( t ) ,  u ( t )  . The functions $0, $ i ( t ) ,  $ 2 ( t ) ,  . .  . , & ( t )  
coincide in this case with the Lagrange multipliers, and relation (I. 9) 
coincides with Weiers t rass 's  necessary condition. Indeed, f rom the 
definition of the supremum, (I. 9) implies that 

(I. 11) 

for  any u E VIt.  
In general, when the set  Vu is closed, the point at which the function 

H ( u )  reaches its maximum need not be a stationary point of the function, S O  

that the Euler-Lagrange equations (I. 10) a r e  not always the necessary 
conditions of optimum. 

Note that various transformations mapping the set  Vu onto some open 
set, which a r e  widely used by various authors (e. g., 17-91) in conjunction 
with the apparatus of variational calculus, lead t o  the equations of the 
maximum principle (I. 3). (I. 8). (I. lo ) ,  i f  their  application is valid. 
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E x  a m p  1 e I. 1. As an example, let  us  consider the problem of the 
shortest  path between two given points A and B .  
missible paths is limited by additional conditions requiring single-valuedness 
of y(x) ,  Z ( X )  on ( X A ,  X B )  . 
set D then take the form 

The set  D of- all  the ad- 

The functional and the equations describing the 

(I. 1 2 )  

. d z  
(I. 13) 

(I. 14) 

(I. 1 5 )  

of the problem, and the derivatives of the functions y(x) and Z ( X )  a r e  the 
control element S .  

The vector We designate them qY 
and q2 , respectively : $= ($v, S r ) .  

By 161 ,  we have 

' dY y= - =u. z= -= v. 

I! (X,4)"I!d: I! (xB)=I!B;  

(xd) = Zd; z (x,) = zg . 

d x  ' d x  ' 

Here the rectangular coordinates y and 2 a r e  the phase coordinates 

should also have two components. 

i. e., the function H depends only on the vector $ and the control elements 
u, v. Equations (I. 8) thus take the form 

whence it follows that the components of the vector $ a r e  constant: 

+,=const; $,=const. 

Let us  investigate the maximum of H with respect to u . For $,,=I), 
H has a maximum only for $,=1)~=0. The trivial  solution $ o = $ , = ~ ~ = O  
does not satisfy the maximum principle, and we therefore have to  take 
V o f O .  For any given X ,  $o<O, $,, qZ,  the function H (u ,  v )  has a single 
point of maximum, E, V ,  which is independent of x . 

Using equations (I. 8), we find that the shortest  path is the line of constant 
slope, i. e., a straight line; since only one straight line can be passed 
through two given points, the shortest  path is unique. 
path between two points certainly exists,  we conclude that our solution 
indeed gives the shortest  path - the straight line joining the points A and B .  

Since the shortest  

Bellman's dynamic programming method 

Consider a particular case of the general  problem, when the initial 
values of t and y a r e  fixed, the final value of t i s  given, but no constraints 
a r e  imposed on the final value of y . Moreover, there  a r e  no constraints 
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on the phase vector in the entire interval ( t o ,  I , ) .  so  that the set V,( t )  is 
an open domain. 

on a free target  in vacuum. 
direction can be altered at will. 
acceleration on the two objects are ignored, the homing equations relative 
t o  the free target  may be written in the f o r m  

A suitable example is the optimal homing of a liquid-propellant rocket 
Constant engine thrust  is assumed, but i t s  

If the differences in gravitational 

(I. 1 6 )  

.-.- - 
where r, v are the radius-vector and the velocity vector, p is the unit 
vector in the direction of the thrust  ( a  control element), 
produced acceleration (a+known function of time). The initial position ro 
and the initial velocity Va of the homing rocket are known. The problem 
is to  minimize the square of the distance to  the target r: at the final t ime  

u ( t ) i s  the thrkst-  

t=t,.  

optimum principle / 1 /. 

initial solution, subsequent solutions constitute an optimum in relation to  
the state ensured by the original solution. 
of an optimal process  is an optimal process  in relation to  the current 
(instantaneous) state. 

The sought optimal solution and the minimum value of the functional 
clearly depend only on the initial t ime t and the initial state y . We thus 
have a sca l a r  function S ( t ,  g) defining the minimum value of the functional 
for given t, y, which are treated as the initial values of the problem. In 
our example, this s ca l a r  function is the square of the minimum distance 
t o  the target  at  the end of the homing run, assu-ming that the h o s i n g  
missi le  was LauGched at  the t ime t f rom point r with velocity V .  
function s(t, r ,  V )  in our example is thus defined a s  

In tackling problems of th i s  kind, Bellman's method uses  a self-evident 

Optimal behavior has  the property that, whatever the initial s ta te  and the 

In other words: any component 

The 

+ f  

S(t , , r ,V)  = r2.  (I. 17)  

The optimum principle is expressed by the following functional equation: 

(I .  18) 

where { I ) }  is the se t  of the admissible values of the control elements; t is 
some t ime from the interval [t. f ~ ] ;  y( f )  is the solution of (I. 3) in the t ime  
interval [t. T] with the control element u ( f )  and the initial conditions f, y ; 
y. =y(t) is the value of this solution for f = r  . Allowing t t o  go t o  t and 
assuming continuity and differentiability of S ( t ,  g ) ,  we readily find the 
following par t ia l  differential equation: 
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with boundary condition (I. 17). 
the function S( t ,  y) ;  the optimum control element at any point (t, y) is found 
by minimizing the expression in braces.  

for given initial values t o ,  9 0 ,  but in fact solve a more  general  problem of 
the optimum behavior for any pair  of values t, y ,  treated a s  the initial 
values. 
s y n t h e s i s .  

When this equation is solved, we obtain 

It is readily seen that in this way we not only find the optimum program 

This type of solution is known a s  o p t i m u m  c o n  t r o 1 

In our particular example, Bellman's equation (I. 19) takes  the form 

(I. 20)  

--f 

Seeing that a ( t )  >o and the sca l a r  product ds p i s  minimum when the 
--* as a3 

unit vector p is antiparallel  to  -, 
dV 

we rewri te  (I. 20)  in the form 

(I. 21) 

(I. 22)  

This is a nonlinear partial  differential equation of f i rs t  or_de_r. Its solution 
with boundary condition (I. 1 7 )  gives a certain function S(t ,  r, V ) .  Expression 
(I. 21) then defines the field of optimum control eLements, i. e., the optimum 
direction of the thrust  vector for any s ta te  I ,  r, V .  

analog - the Hamilton-Jacobi equation of c lass ical  mechanics which differs  
f r o m  (I. 19) in that u is obtained f rom the condition 

Like the maximum principle, Bellman's equation has its classical  

(I .  23) 

and not by minimizing the expression in braces.  

with the Hamilton-Jacobi equation in cases  when the given expression attains 
i t s  minimum at a unique stationary point. 

Both methods - the maximum principle and Bellman's dynamic 
programming method - a r e  widely used because they a r e  organically linked 
with the particular features of modern applied problems and allow in a 
straightforward manner for  the physical constraints imposed on the various 
elements. 
these methods. 

flight dynamics problems), however, which a r e  very difficult and often 
impossible to tackle by these methods. 

Equation (I. 19) is evidently more general  and it essentially coincides 

A wide range of optimum control problems have been solved by 

There exists another extensive class  of problems (including typical 

Let u s  consider some simple examples of this kind. 
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E x  a m  p 1 e I. 2. Consider the problem of the optimal conditions of the 
ver t ical  ascent of a rocket launched f rom the surface of the Earth, which is 
required to  reach  a given altitude with minimum fuel consumption (or, 
equivalently, t o  reach a maximum altitude with a given fuel charge) / 5 / .  

The equations of motion of the rocket are 

i l = - l P .  
C 

(I. 24) 

(I. 25) 

(I. 26) 

Here, h, V,  m a r e  respectively the altitude, the velocity, and the mass  
of the rocket; 
P is the engine thrust, controllable between the l imits  O<P.-<P,,,; c is the 

nozzle velocity of the combustion gases  (constant). 
given initial values of the altitude, the velocity, the mass,  and time; hi, I ,  
are the final altitude and time. 

A character is t ic  feature of this  problem is the l inear  dependence of the 
right-hand s ides  of equations (I. 24) -(I. 26 )  on the controlled thrust  P . 

Let u s  analyze the problem using Pontryagin's maximum principle. 
Let 

X ( h ,  V )  is the drag; g ( h )  is the gravitational acceleration; 

Let ho, VO, mo, t o  be the 

be the Hamiltonian and the adjoint system of equations, respectively. 
optimum solution is then selected f rom among the solutions of the sys tem of 
differential equations (I. 24) -(I .  27) closed by the additional relation 

The 

The sought solutions should satisfy the following boundary conditions: 
for  t=to,  

h=ho; V = V .  01 m=m 0, . 

for  t=t, ,  

Let u s  consider (I. 28) in more detail. Seeing that the $unction H depends 
linearly on the controlled thrust, we readily conclude that depending on the 
sign of the coefficient before P (the switching function), 
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j 

(I. 29) 

this  equation is satisfied by 

t 1) P=P,,, for  M > o  

2 ) P = O  for  M<O 

3 )  M=O 

(I. 30) 

In case  3, H is evidently independent of P ,  so  that any H may be chosen 
f r o m  10, Pmaxl. 

In our example, case  3 in (I. 30) may be identically satisfied over  some 
t ime interval 
is known a s  the singular control solution. 

equation M=O consistent with sys tem (I.  24) -(I .  2 7 ) .  

The corresponding solution in the theory of optimal processes  

The corresponding control function is obtained by making the finite 

Setting the total t ime derivative of M equal t o  zero, 

(I. 3 1 )  

and inserting the right-hand s ides  of (I. 24)-(I. 27) together with the equality 
H=O,  we obtain a new finite relation, which is independent of P : 

(I. 32) 

Repeating the same  operation for (I. 32), we obtain a l inear  equation for 

The construction of the optimum program generally involves the solution 
P , from which the sought control function is found. 

of a boundary-value problem for (I. 24)-(I. 28). As  we have seen above, 
the rationale of the procedure based on the necessary conditions only is 
twofold: f i r s t ,  the existence of the sought optimum program must be 
established and, second, the uniqueness of the solution satisfying these 

necessary conditions should be proved. The 
existence of an optimum program for the 
problem being considered (the right-hand 
s ides  of the equations ( I .  24) -(I. 26) a r e  
linear functions of the control elements) 
follows f rom the general  considerations 
of the theory of optimal processes .  The 

h i  p3; value uniqueness problem of the for solution a nonlinear of a sys tem boundary- of 

differential equations, on the other hand, 
is by no means certain. The existence of 

P=Pmar M=O singular control markedly aggravates the 
situation. Indeed the singular control 
program is the set  of switching points 
M=O , s o  that at each of these points we 
may take both P=O and P=P,,,,, 
(F igure  I. 1). 

I_ 

(hlhV*) 
0 V- 

FIGURE I. 1 
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Not every t ra jectory obtained in this  way need be consistent with the 
boundary conditions, and there  a r e  in fact ekamples showing that there  
may be infinitely many such t ra jector ies .  

We  thus see  that complete solution of problems of this  kind requi res  
sufficient or, at least, additional necessary conditions of optimum, which 
would enable u s  t o  eliminate a l l  the incompatible solutions. 

The dynamic programming method in this case  leads to  a nonlinear 
par t ia l  differential equation 

dS -) 1 P]=O, 

O C P X P , , ,  

o r  

(I. 33)  

where 

d S  1 dS 1 

x ( M )  = dV nt dm c 
MP for  M=- --- - > o  

I o for  M <o .  

No sufficiently general  theorems of the existence of solutions for  these 
equations (with a non-differentiable left- hand par t )  a r e  available; nor  a r e  
there  regular  methods for  their  solution (numerical  o r  otherwise). 

We a r e  thus faced with a contradiction: in those cases  when the 
additional necessary and sufficient conditions of optimum a r e  required for  
constructive purposes, they a r e  in fact inapplicable. New effective 
optimum conditions of singular control thus have to  be found. 

Let u s  consider the same  problem a s  in Example I. 1 
with one difference: the engine i s  not throttled, and it i s  e i ther  on o r  off 
(the thrust  P may only take on two values, 0 and Pmax).  In this  case, a s  
is readily seen, the equation M=O is no longer compatible with equations 
(I. 24 )  - ( I .  27)  of the maximum principle, so that the singular control 
solution is not included among the allowed solutions of these equations. 
However, even i f  a unique solution has been obtained for  the boundary-value 
problem of equations (I .  24)  -(I. 27) ,  we can by no means be cer ta in  that 
this  solution is the optimum, a s  we do not know that the optimum solution 
exis ts  among the admissible solutions. The problem is solved in this case  by 
a minimizing sequence, providing a so-called sliding control program. It 
will be shown in what follows that a typical solution of this  problem is a 
succession of thrust  programs with infinitely increasing thrust  switching 
frequency around the line M=O, N = O .  

sequences. 

E x  a m p  1 e I. 3. 

We a r e  thus faced with a new problem of finding appropriate minimizing 



Problems of this  c lass  can be replaced by another problem, for  which 
the optimum solution is known to exist. 
of the original problem corresponds to  the singular control solution of the 
new problem, and in the final analysis the sliding control problem reduces 
t o  a singular control problem. 
precisely coincides with equation (I. 33),  with all  its consequences. 

Suppose that the thrust  in Example I. 2 does not have 
a maximum value ( this  is a typical situation in the mechanics of space 
flight). In this case, a s  is readily seen, both the function H and the left- 
hand side of Bellman's equstion a r e  infinite for positive M ,  so  that neither 
the maximum principle nor  the dynamic programming method a r e  
applicable in their  original form. Moreover, with a rb i t r a ry  boundary 
conditions, the admissible solutions of the problem do not include the 
optimum solution, so  that we have to  construct a minimizing sequence, 
although of a different type: a sequence allowing indefinite growth of the 
thrust .  
elements. In additiori to  these fundamental difficulties, there  a r e  
difficulties of secondary importance associated with the actual numerical  
solution of the problems. 
method. How a r e  we to  solve numerically equation ( I .  19), say? Consider 
the solution by the grid method, when we have to  compute the partial  
derivatives of the function S(t1, y) at certain tabular points (the function is 
known for  t=tl) .  

points and approximate to the values of S for t= ti-A using the equality 

However, the minimizing sequence 

Bellman's equation for this  problem 

E x a m p 1 e I .  4. 

This is a typical feature of systems with unbounded linear control 

This remark  primarily applies to  Bellman's 

F r o m  equation ( I .  19) we then find the values of aS/dl at the same tabular 

dS(t,YI A* s (f1- A)=S (tl, fj) - ~ 

d t  

The same procedure i s  then repeated for S(t1---A, y) , etc., until we 
Consider the case of a midcourse m s n e p e r  in space. Then Leash t o .  

r, V a r e  three-dimensional vectors, and S ( t ,  r ,  V )  is a function of seven 
variables.  The numerical grid consists of ten values of each variable f o r  
every t . It thus comprises  lo6 points, at which the function S should be 
computed and the resul ts  stored. 
cannot be stored in the immediate-access memory of most computers. 

And yet, this  i s  a very modest number considering the required 
accuracy. If the grid spacing is reduced only by a factor of 2, this number 
will increase by a factor of 2 6 =  64, so that even the most optimistic 
forecasts  of the future development of computers can hardly catch up with 
this  "growth". Suppose that equation (I. 19) has been solved; it is still not 
c lear ,  however, how we a r e  to  s tore  and use the solution, which is a 
function of seven variables defined by its numerical values. 
techniques can be applied in o rde r  to  reduce this "curse of dimensionality", 
to  borrow Bellman's expression, but it cannot be eliminated completely, so  
that at the present stage nonlinear problems of third or fourth o rde r  
apparently constitute the limit a s  f a r  a s  Bellman's method is concerned. 

The maximum principle does not lead to  such catastrophic effects, 
and it is much more  powerful and more promising in this respect.  In view 
of the difficulties involved in the solution of boundary-value problems, we 
have to concentrate on developing alternative methods of optimal solution, 

Such a tremendous volume of data 

Certain 
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which will not require  straightforward comparison of a l l  the different 
alternatives satisfying the necessary optimality conditions. 
important and a s  yet unsolved problem. 

the next section, opens new possibilities for  overcoming these fundamental 
difficulties. 

This is a highly 

A new approach to  the solution of the general  problem, considered in 

Optimum principle based on a reduction of the 
given problem to  a t r iv ia l  problem 

Consider the problem of minimizing the functional 

1 .  

(I. 34) 

on the set  E of pa i r s  of vector functions y( f ) ,  u ( t ) ,  which differs f rom the 
se t  D only in that y ( f )  and u ( t )  a r e  not related by differential equations. 
This  problem will be called a t r i v i  a 1 p r o b l  e m . 
obvious optimum conditions apply to this  problem. 
minimized on the set  E by the vector functions T j ( t ) ,  E ( t )  whose values at 
every inter ior  point of the segment [ t o ,  
over  the se t  v(t) and the values at the integration l imits  to, t ,  minimize the 
function CD (yo, y r )  over  the set V y ( t 0 ) + V v ( t l ) :  

The following almost  
The functional I is 

f l ]  maximize the integrand R(1, g, u )  

R ( 6  7, Z)= sup R ( f ,  y. U ) f E ( f O ,  4); ( I .  35)  
(!/. ~ ~ ) E v ( f ) .  

(I. 36)  

Y ,  E V g [ f 1 )  

In other words, the problem of minimizing the functional over  the set of 
functions y ( t ) ,  u ( t ) ,  i. e., over  an infinite se t  of numbers, is thus reduced 
to  finding the maximum of a function R ( t ,  y, U )  of n f r  variables  y‘. uk for  
every given f ( t o ,  f l )  and the minimum of the function @(yo, y I )  of 2n 
variables .  

of a minimizing sequence ( f j s ( t ) ,  & ( t )  } . 
These conditions, with slight reservations, are generalized to the case  

This sequence sat isf ies  the conditions 
- -  

R ( i 3  Ys, u s )  + sup R ( t ,  y, u) ,  t E ( f 0 ,  4): (I. 3 7 )  
( Y .  u)EV(r)  

(I. 38) 
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In view of the simplicity of these conditions, it is advisable t o  reduce 
the general  variational problem with differential constraints t o  a t r iv ia l  
problem, i. e., we have t o  find the functions R ( t ,  y, u )  and @((YO,  yl) such 
that the solution of the t r iv ia l  problem is also a solution of the original 
problem. 
book. 

principle devolves. 

This  is the essence of the variational method considered in this 

Let u s  present, without proof, the basic result  on which the variational 
The functions R and CD are sought in the following form: 

n 

Q ( t ,  y, u ) = C Y y i f ' ( t ,  Y, u ) - f 0 ( t ,  Y? a)tYl; (I. 39)  
1-1 

where yyi,  yr are the partial  derivatives of some function cp(f, y) which is 
continuous and differentiable over V,(t)  . 

Let 

(I. 41) 

m= irif CD (Yo. Yl). (I. 42) 
Yo E Vy(l0) .  # , E  V Y ( f ' )  

T h e  o r e m  I. 2. Consider a pair  of vector functions i j ( t ) ,  E ( t )  f rom the 
set D and a function q ( f ,  y). such that 

- 
1 )  rz [ t ,  y(0, u (41 =r.(t); ( I .  43)  

( I .  44) 

This pair  ,v(f), E ( t )  minimizes the functional 1 .  The functions R( t ,  y, u )  
and Q(y0, y I )  mentioned above thus have the fo rm (I.  39) ,  (I. 40) and are 
expressed in t e r m s  of the function cp(t, y)  of the n+l arguments f, y ' ,  
i =  1, 2, . . . , n, which satisfies the conditions of the theorem. 

In a more  general  case,  when our problem is t o  find a minimizing 
sequence, Theorem I. 2 is formulated in a somewhat different form.  

T h e o r e m  1 . 3 .  Consider a sequence ( i j s ( t ) ,  E s ( t ) }  f rom D and a 
function cp,  such that 

3)  p ( t )  is piecewise-continuous and m is a finite number; 
4) the sequence R[t, fjs(t),  Es(t)]  is bounded. 
Then th is  sequence minimizes the functional 1 on the se t  D . Conditions 

1 and 3 may be replaced by a more  general, though less obvious, condition 

14 



The main difficulty associated with the application of this  principle is 

The definition of cp essentially determines the method of solving the 
the definition of the function q( t ,  9) . 
problem. We will see at a la te r  stage that one of the possible definitions 
of cp leads, in particular, t o  the equations of Pontryagin's maximum 
principle as the necessary conditions for  the maximum of the function R , 
while another method leads to  Bellman's equations. 
however, do not exhaust all the different possibilities. 

The a rb i t ra r iness  inherent in the definition of cp may be put t o  work SO 

a s  t o  devise the best procedure for  each par t icular  problem. 
Let u s  consider two simple examples which i l lustrate  this  point. 
E x a m p 1 e I .  5. 

These two alternatives, 

Minimize the functional 

subject t o  the constraints 

rj=u; [ u l , < l ;  y ( O ) = y ( l ) = O .  

Here y and u a r e  sca la r  functions. 
The function R ( t ,  g, u )  has the form 

(1.48) 

(The function CD is a pr ior i  minimized by Theorems I. 2 -I. 3, since go. 91 
are fixed numbers. ) The function cp is defined so a s  to  make R independent 
of u .  To this  end, i t  suffices to  take 

'Pv=- l ,  (I. 49) 

whence 

(P=--Y+ c t u  7 

where C ( t )  is any differentiable function. 
Thus, 

R = -y2+ c,, (I .  50) 

and this  function has a maximum for  g=O (with any u 1. 
Setting y ( t ) = O  in the equation y = u ,  we find E ( t )  10 . Since y ( t )  

sat isf ies  the boundary conditions, the pa i r  y ( t )  =0, C ( t )  =O is the sought 
solution minimizing the functional. Note that we have obtained the 
minimizing solution without solving any boundary-value problems. 

For comparison, let us  consider another definition of c p ,  which leads  
t o  Bellman's equation. 
of the function R with respect  t o  u for  any t and y and set it identically 
equal t o  zero: 

According to  this  approach, we find the maximum 
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. This  is a fair ly  complicated nonlinear par t ia l  differential equation (with 
a nondifferentiable left-hand side). 
s impler .  

The f i r s t  technique is thus much 

E x  a m p  1 e 1. 5. Under the same constraints, minimize the functional 

The function R has the form 

(I. 51) 

We take r p u = O ;  ( p f = O .  The function R ,  for  any t and y , thus has two 
maxima, u = + I  . Its maximum with respect  to  y , a s  before, corresponds 
to  y=O. We thus have 

U ( t )  =o; E, ( t )  = +l; Z , ( t )  =--1. 

It is readily seen  that neither of the two solutions maximizing the function 
R sat isf ies  the differential equation # = u .  However, the existence of th ree  
points at which R has  maxima enables u s  to  construct a sequence of 
solutions of the equation g = u  such that R goes to  a maximum for every t , 

R ( t ,  U s ( t ) ,  t i s ( t ) ) -+p( t )= l .  

This sequence is constructed as shown in Figure I. 2.  
AS the thrust  switching frequency indefintely 

increases  - (S-m), we have g s ( t )  -0. F o r  any S 
we have u3 ( f )  = 1. 

This sequence provides conditional sliding 
solution with zero  closeness function y ( t )  5 0  
and bas is  controls U I , Z =  f 1. 

The above examples have the i r  own charac- 
te r i s t ic  features, a s  the previously considered 

0 t problems. In each case, the definition of (r 

took into consideration the par t icular  features  
2 of the problem, and thus led to an effective 

solution of the problem by a method entirely 
different f rom the traditional techniques. 

Y ( t )  y& 

FIGURE I. 2 
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Chapter I 

ELEMENTS OF THE THEORY 

I 1.1. STATEMENT OF THE PROBLEM 

Our problem is to  minimize the functional 

on a set  D of the pairs  of vector functions y ( t ) ,  u ( t )  satisfying the following 
conditions: 

[to, ill; i t s  components yf  ( t )  (i= 1, 2, . . . , n) a r e  continuous over [to, t l]  and have 
a piecewise-continuous derivative; for any fixed t c[to, tI], the vector y ( t )  
belongs t o  a given region V,(t)  in an n-dimensional vector space. 

components uj ( t )  ( j =  1,  2, . . . , r )  a r e  continuous everywhere in ( t o ,  fl), 
except for a finite number of points, where they may have discontinuities 
of the f i rs t  kind; for any tc  ( t o ,  t l ) ,  y cV , ( t ) ,  the vector u ( t )  belongs to  a 
given set  V,(t, y). 

a)  The vector function y( t )  =[yI ( t ) ,  . . . , y n ( t ) ]  is defined over the segment 

b) The vector function u ( t )  =[ul ( t ) ,  . . . , ur ( t ) ]  is defined over [ t o ,  tl] ; its 

The function F (yo, yl) is continuous for all  yo, y ~ ,  where 

YO'Y ( t o )  1 Y I = Y ( t l ) .  ( 1 . 2 )  

The conditions imposed on y ( t )  and u ( f )  define a set  V ( t )  of admissible 
values of combinations of n+r numbers (yi, u' )  for every t 
V ,  of the admissible values of ( t ,  y) in the (n+ 1)-dimensional ( f, y )  space, and 
a set  V of admissible combinations of rz+r+lnumbers (yf, uj ,  f) 
( i= l ,  2 , .  . . , n, j = l ,  2 , .  . . , r )  . In addition to the above conditions, the pair  of 
vector functions y( t ) ,  u ( t )  should also satisfy the sys tem of n differential 
equations 

(to, tl). a region 

~ = f ( k  YV u ) ,  (1 .3)  

where f =  (f1, f z ,  . . . , fn) .  

t, y, u . 
The functions f' (t, y, u ) ,  L=O, 1 , .  . . , n, a r e  defined and continuous for all  

The vector y =  (y1, y2,.  . . , y") is generally known a s  the phase vector or 
the state vector, and its components a r e  the phase coordinates. 
vector u= (u*,  u2, .  . . , u') is known a s  the control vector, and its components 
a r e  the control functions or controls,  Formally the phase coordinates 
a r e  distinguished f rom the control functions in that the differential equations 

The 
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(1. 3 )  contain derivatives of the phase coordinates and do not contain 
derivatives of the control functions. The se t s  V,(f,) and V,(fl) of the 
admissible values of yo, y~ constitute the boundary conditions. 

The argument f may be identified with time, any ascending function, 
a phase coordinate, or some other parameter .  

The problem is formulated a s  follows: in  the set  D of the pairs  of 
functions y ( t ) ,  u ( f )  find a pair  y(f ) ,  ii(f), which minimizes (maximizes) 
the functional I. 

If the se t  D does not contain such a pair  of functions, the problem is 
formulated in a slightly different form: find a sequence (gs(f), iis(f) } C D 
such that for S--00 the functional (1.1) goes over this sequence t o  its 
lower-bound value on the se t  D. 

solution or the absolute minimizing solution, and the sought sequence of 
ys(f), &(f) will be called a minimizing (optimizing) sequence. 

We will mainly be concerned with minimizing a given functional. 
problem of maximizing the functional can always be reduced to  the 
minimization problem by a simple r eve r sa l  of the functional sign. 

The sought pair  of functions y(f ) ,  ii(f) will be re fer red  to  as the optimum 

The 

S 1.2. THE SUFFICIENT CONDITIONS OF AN 
ABSOLUTE MINIMUM 

In this  section we will prove a theorem which constitutes the basis  for 
all the methods of solving the optimization problems described in this  book. 
First, however, we have to  prove one lemma. 

Let the functional I ( v )  be defined over some se t  M,  v M .  Let 

inf / ( v ) = M .  
W M  (1.4) 

Find the absolute minimum of I on M ,  i. e., find a sequence { a s }  CM, 
such that 

Iim I (Us)= m. 
S-r - (1 .5)  

We cal l  this  sequence a minimizing sequence and i t  is said to minimize 
If there  exis ts  an element 6 6 M such that 

I ( 6 )  =m, (1. 6)  

In this case  the problem reduces to finding 

the functional I over the se t  M. 

- 
we may take vs=E (s=l, 2 . .  .). 
the element V E M for which the functional I attains i ts  absolute minimum 
over the set  M. 

L ( v ) = I ( v )  fo r  v 6 M .  
Consider a set  N ) Mover which a functional L is defined, so that 

L e  m m  a .  Consider a sequence (as} < M satisfying the condition 

where 

This sequence minimizes the functional I over M :  

tGs) -f m. 
S- - 
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P r o o f .  Let (1.7) hold true.  By definition, L(FS)=I(Us) .  We will now 
show that l=m. 
m-l>E>O. Since (US} ( M ,  we have I(Fs)--I>~for any S. This, however, 
contradicts (1. 7). Hencel=m, and (1.5) follows f r o m  (1.7). Q. E. D. 

over a se t  M by a n  analogous problem over a l a rge r  s e t  N .  
problem may prove to  be s impler  i f  the s t ructure  of the set N is relatively 
simple. 

continuous partial  derivatives rp~, 'py= (vu1,. . . , vu") for  all t, y, except a finite 
number of sets t=const i n  the ( t ,  g) space. 

If this is not so, then f rom M ( N  we have m>l so  that 

This lemma enables us  t o  replace the problem of minimizing a functional 
The "augmented" 

Consider a function q(t ,  9) which is continuous for all t, y and has  

Now construct the functions 

p(t)=supR(t, y, U). 
( u , u ) E  v( r )  

Here 'py is an n-dimensional vector function, and the f i r s t  t e r m  on 
the right in (1.9) is a sca l a r  product of n-dimensional vectors:  

(1.10) 

The vectors  y and u on the right in (1.10)  are assumed t o  be independent. 
T h e o r e m  1.1. Consider a sequence { y s ( t ) ,  us(t)} C D. For this 

sequence to  minimize the functional I over the se t  D, it is sufficient that 
t he re  exists a function rp(t, y) such that 

1 ) R [4 i s  (0, .s (41 -t P (4, t c ( t o ,  fJ*: 

2) (D Gos, --&I + fnf  Q, (yo, y J >  -a. 

3) ~ ( t )  is piecewise-continuous over [to, t , ] ;  
4) t he re  ex is t s  a finite number Q such that for  any S<m and any t G  ( to,  f,) 

R ( t ,  g s ( t ) ,  Gs( t ) )>Q.  

(1.11) 

(1 .12 )  
s-cc ) 'oEVy(l , ) .  usE1',( f I ) ;  

R e m a r k .  If the absolute minimizing solution ( i j ( t ) ,  E ( t ) )  Dexists,  
Theorem (1.1) takes  the following form. 
A sufficient condition for the functional (1.1) t o  attain an absolute minimum 
on this pair_ is the existence of a function q(t ,  y), such that 

almost everywhere in ( t o ,  tl); 

Consider the pair ( i j ( f ) ,  N ( t ) )  D. 

1) R ( t ,  Y( t ) ,  u ( O = p ( t )  ( 1.1 1 +) 
- -  

2) @ (Yo, y1)= i n f  @(Yo*  Yl) .  (1.12") 
rloEvy(f,) * Y,EV g(f> ) 

Conditions 3 and 4 in th i s  case are satisfied automatically. 
P r o o f . Here the se t  M of the previous lemma is identified with the 

se t  D of the pa i r s  of vector functions y ( t )  , u ( t ) .  
se t  E of the pa i r s  of vector functions y ( t ) ,  u ( t )  which differs f rom D i n  the 
following two respects :  first, the functions y' ( t ) .  (i= 1, 2,. . . , n)  may have 
discontinuities of the f i r s t  kind at a finite number of points of the segment 
[to, f,] and, second, the vector functions y ( t ) ,  u(t)are not related by 
differential equations (1.3). 

* Convergence in the measwe is implied here: the measure of the set of pointst E ( to ,  f,), where p ( t ) - & > ~ ,  
goes to zero for any given E. 

The se t  N is defined as the 

We define the following functional on E :  
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(1.13) 

R=cp--fO, ( Y ( t ) ,  u ( t ) )  ED, (1.14) 

where ip is the total derivative of the function cp in virtue of (1.3). 
Inserting (1.14) in (1.13) and remembering that y(t )  a r e  continuous 

functions for u ( t ) ) ~  D, we obtain L=I. 
Suppose that there  exis ts  a function q(t,  y) and a sequence { q s ( t ) ,  E s ( t )  1 E D 

satisfying conditions 1 through 4 of the theorem. 
case {ys(t),iis(t) ] is a minimizing sequence of the functional L over the set  E. 
i. e., 

lim L (ij,(t), Gs ( t ) ) - - ~  = 0, 

We will show that in this 

S * -  

where 

I=inf f . ( y ( t ) ,  u (0). (1.15) 
E 

Since the functions y ( t )  which belong to the set  E may have discontinuities, 
the f i rs t  and the second t e r m s  inexpression (1.13) for L a r e  independent. 
Therefore 

We have 

Using (l.ll), (l.lZ), and Lebesgue's theorem on the l imit  of an integral, 
we write 
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(1.18) 

Suppose that our proposition is not true, i. e., the given sequence does 
not minimize the function L over E .  
that 

Then there  exis ts  a number E > O  such 

and by (1.18) 

According to the definition of the exact upper bound, there  exis ts  a 
sequence { g k ( t ) ,  u k ( t )  } C E such that for a sufficiently large k 

Subtracting inequality (1.20) from (1.19), we find 

o r  

(1.21) 

The integrand is non-positive almost everywhere in ( t o ,  t l ) ,  so  that the 
integral  is also non-positive, and inequality (1.19) breaks down. 

The sequence ( y s ( t ) ,  l is ( t )  
In virtue of our lemma, this sequence also minimizes the functional I 

thus indeed minimizes the functional L over E .  

over D. Q. E. D. 

§ 1.3. P R O B L E M S  WITH A F R E E  BOUNDARY 

So far  we treated [to,  t l ]  a s  a segment with fixed end points. In some 
problems, however, t ,  is not fixed and may be chosen f rom considerations 
of optimality. 

We again consider the minimum of the functional 

(1.22) 
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Here t l  is an element of the se t  T of points of the t axis contained in  the 
segment [to, q,  T<oo.  
conditions listed in  § 1. 1. 

The function F ( t 1 ,  yo, y l ) i s  defined and continuous for  tl E. z, yo 6 V,,( to) ,  
yl 
tl E T and the vector functions y ( t )  and u ( t )  defined over  the segment [ t o ,  ti]. 

The vector functions y ( t ) ,  u ( t )  satisfy all the 

The sets V,( t )  and V J t )  a r e  assumed t o  be defined over the segment [ t o ,  TI. 

v,(tl). Each element of the se t  D is now a combination of a number 

The analog of Theorem 1.1 in  this  case  is formulated a s  follows. 
T h e o r e m  1.2. Consider a sequence (fls,  y s ( t ) ,  i i s ( t ) } (  D. For th i s  

sequence to  minimize the functional I over  D ,  i t  is sufficient that there  
exis ts  a function cp(t, y) (see § l .  2 )  such that 

(1.23) 

(1.24) 

3) p ( t )  -0  on (to, 7'); 
4) there  exis ts  a finite number Q such that for  any S<m and any 

t c ( l o ,  tis): 
R ( t ,  y s ( t ) ,  Z s ( t ) ) > Q ,  

where R ( t .  y. u )  and p ( t )  a r e  defined by (1.9), (1.10). 

f r o m  D in two respects :  first,  the functions y' ( t )  ( i =  1, 2, . . . , n) may have 
discontinuities of the first kind at a finite number of points of the segment 
[to, r ]  and, second, the vector functions g ( t ) , u ( t )  a r e  no longer related by 
differential equations (1.3). 

P r o o f .  We define a se t  E of the t r i ads  ( t l ,  g(t), u(t))which differs 

On E we define the functional 

L(t1, Y ( 4  u ( t ) )  = al (11. yo, Y J - J  R( t ,  g, u)dt.  
f ,  

(1.25) 
f o  

Clearly L= l fo r  ( t l ,  y ( t ) ,  u ( t ) )  E D .  We will now show that conditions 1 
through 4 of the theorem a r e  sufficient for  the sequence ITls, ys( t ) , ,  & ( t )  } t o  
minimize the functional L over E .  
with that t o  Theorem 1. 1. 

In a l l  other respects ,  the proof coincides 

Let 
k V I ) =  inf L(t1, Y(4 ,  u (01, (1.26) 

(U(f).U(t))E a t , )  

where E(t l )  is the section of the set  E for  a fixed t l ,  i. e., the set  of e lements  
[tl, y ( t ) ,  u ( t ) ]  6 E for  a fixed fl, 

4J (ti) = inf @ ( 4 9  Yo9 Y1); ( 1 . 2 7 )  

(1.28) 

(,O<,*)E v,(fo)tv,v,) 
m = inf + (ti). 

f , 6  

Using (1.26) ,  (1.27),  (1.28) and condition 3 of the theorem, we may 
write 

Z= inf L (fl, y(t), u (t))= inf k (ti)= inf + ( t l )  = m .  (1.29) 
E t , E  7 f , €  7 

On the other hand, the limit of the functional L over any sequence 
Itls, y s ( t ) ,  u s ( t ) }  E E  satisfying the conditions of the theorem is also equal 
t o  m :  
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(1.30) 

Since the set  Z is bounded, we see,  using the properties of the sequence 
R ( t ,  y s ( t ) ,  u s ( t ) ) ,  that the second t e r m  vanishes. 
equality together with (1.24), (1.27),  (1.28), we find 

Therefore, using the last  

lim L (tis, &(t), is( t ) )=m=l,  
S+== 

i. e., the sequence {tis, y s ( t ) ,  &(t)  ] indeed minimizes the functional L on E. 
The r e s t  of the proof is conducted a s  for  Theorem 1.1.  
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Chapter II 

SOME METHODS OF SOLUTION OF VARIATIONAL 
P R O B L E M S  USING T H E  SUFFICIENT CONDITIONS 
O F  T H E  ABSOLUTE MINIMUM 

In th i s  chapter we consider some  methods of solution of variational 
problems based on Theorems 1.1 and 1.2; these are methods which show 
how to choose the function c p ( f ,  y) so as  t o  reduce the t reatment  to  standard 
classical  methods - Lagrange's method and the Hamilton-.Jarobi method - 
modifying them to  such a n  extent that a complete solution of the problem 
i s  obtained, i. e., the absolute minimizing solution is found. 

All the resul ts  are  derived for the case  when the minimizing solution 
( y ( t ) ,  U ( l ) )  I .  D exists.  A more  general  case  i s  treated in the next chapter.  

§ 2.1. T H E  LAGRANGE-PONTRYAGIN M E T H O D  

This  method enjoys the widest applicability, although it is not always 
the simplest .  
cp(t, g)  at  the points of the minimizing solution 

The underlying idea i s  t o  find the partial  derivatives of 

l p i ( t )  ' ( P l i [ [ t ,  Y ( t ) ] ,  i =  I ,  2, . . . , / I ,  (2.1) 

and also the minimizing solution ( J ( f ) .  i i ( t ) )  itself, while the proof of the 
existence of the function q ( t ,  y) satisfying the conditions of Theorem 1. 1 i s  
postponed t o  a l a t e r  stage. 

( t o ,  I,), 
which fo r  f = t o  and I-1, reduces to the points 

For simplicity, let  f ,  be fixed, let v,(f) be a n  open region for all f 

Y ( t o )  !Jo: g ( f , )  E 41: (2.2) 
the se t  V u i s  independent of y .  
iently replaced by a functional Qo/, where 1110 is a positive constant. This  
substitution evidently does not affect the essent ia l  features  of the problem. 

continuous and differentiable for all f, y, u .  
cp(f, y) be twice continuously differentiable at the points corresponding to  
the presumably minimizing solution y(f) ,  we can write the necessary  
conditions of a maximum of R in  t he  f o r m  

In what follows, the functional / i s  conven- 

We moreover assume that the functions f '  ( t ,  y, I L ) ,  f =  I ,  2 . .  . , , n ,  are 
If we fur ther  demand that 
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Using (2 .1 )  and the equality f ( t ,  fj, E ) = i ,  (f j( t) ,  k ( t ) ) f D ,  we obtain 

(2.4) 
d 
- I $ J ~  + H g k =  0; 
dt  

- - 
R u b  [f, !/ ( t ) ,  u ([)I 

(2.5) 

is the gradient of the function ~ ( f ,  y) at a point 

y = i  ( t )  in the space Y, 
H ( f ,  .U' U ) = * ( f ) f ( t .  y, U ) - * o f O ( f ,  y,  .). (2.6) 

Conditions (2.4) and (2.5), together with (1.3), constitute 2n+r equations 
in 2n+r unknown functions 

g ' ( t ) ,  j p i ( f ) .  ~ ' ( t ) ,  i = l ,  2, . . . ,  n; s = l ,  2, . . . ,  r.  

Together with boundary conditions (2 .2) ,  these equations define an 
e x t  r e m a l ,  i. e., a pair ( y ( t ) ,  i i ( t ) ) E  D which sat isf ies  the necessary  
conditions (2.3) for  the supremum of R ( / ,  y. u ) ,  and a vector function $ ( t )  or, 
by (2.6) ,  the gradient of the function q(/, g) at the points of the extremal .  

Conditions (1.3) and (2 .4 )  constitute a system of ordinary differential 
equations for the functions , Y ' ( f ) .  ~ p , ( t ) ,  i =  1. 2, . . . , 1 2 ,  closed by the finite 
relation (2.5), according to  which for u = = i ( t )  the function H [ f ,  , q ( t ) ,  I#(/). u ]  
reaches i t s  largest  value compared to  i t s  values for  a l l  the admissible 
control functions for  every fixed fE (fo ,  t , ) .  Equati0r.s (1.3), (2,4) may be 
written in the fo rm 

These equations constitute a so-called H a m i l t o n i a n  s y s t e m  and 
the function H ( f .  g, $, u )  is known a s  the H a m i l t o n  f u n c t i o n  or the 
H a m i l t o n i a n .  

said to  be c o n j u g a t e .  

a maximum of the function R ,  but a lso the necessary conditions for  a 
minimum of the functional, provided the s t r ic t  inequality $0>0 is replaced 
by the weaker condition $&o. 
adjustment, these equations coincide with the necessary  conditions for the 
minimum of the functional corresponding to  Pontryagin's maximum 
principle. 

The var iables  y'  and $< and the respective sys tems (2.7) and (2.8) are 

Equations (2.4), (2.5) prove to  be not only the necessary conditions for 

This is so  because, after the inequality 
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At all points of the space T X Y  which a r e  not points of the extremal, the 
function cp(t, y) may be defined quite arbi t rar i ly .  If there  exis ts  a function 
cp(f, y) such that at the points of the extremal  , j j ( f ) ,  E ( / )  both the necessary 
and the sufficient conditions for the maximum of R ( f ,  y, u) a r e  satisfied for 
every fixed f € ( t o ,  f l ) .  Theorem 1.1 indicates that the extremal  ( , i j ( f ) ,  E ( t ) )  
is in  fact the absolute minimizing solution. 
by the following theorem. 

equations (1.3), (2 .4) ,  (2.5).  A sufficient condition for  the ex t remal  
( i j ( t ) ,  t i ( t ) ) to  be an absolute minimizing solution for  the functional (1.1) is the 
existence of a function cp(t, y) which is continuously defined for a l l  fc [to, ti], 
y e  V , ( l ) ,  t E  [to, t i ]  and piecewise-differentiable with respect  to t ,  such that 

This result can be summarized 

T h e o r e m  2.1. Let the functions i j ( f ) .  E ( f ) ,  Q ( t )  constitute a solution of 

V , ( f )  and is twice differentiable with respect  to  y for  a l l  

1) V g ' [ ( f ,  & ) ] = q j ( t ) ,  i = l ,  2 , . . . ,  n;  - -  
2) R ( / ,  y, u ) = ( g , l ; v t ) R  ( f ,  Y, u), / E  ( t o ,  1,) 

This theorem gives a sufficient condition of the absolute minimum which. - 
unlike Weiers t rass ' s  sufficient condition of variational calculus and i t s  
generalizations 121, does not require  the construction of the field of 
extremals  nor the derivation of any other extremals  except the one being 
considered ij(f), Z ( t ) .  

problem for the system of ordinary differential equations (1.3), (2 .4) ,  (2 .5 )  
and choosing a function c p ( f ,  g )  which sat isf ies  the conditions of Theorem 2 . 1  
or, more  precisely, proving the existence of such a function. This is a 
highly significant qualification: i t  shows that in Lagrange's method we do 
not have to  determine the particular form of the function cp(t, y)  satisfying 
the conditions of Theorem 2.1, and i t  is sufficient to  prove the existence of 
this  function only. 

The algorithm of the method reduces to  solving a boundary-value 

In particular, we may s ta r t  with the expression 

(2.9) 

where 

Ay' =y'-jj ' ( f )  

and the functions 

o i j ( f ) = p g i , j  I f ,  i ( t ) 1  (2.10) 

a r e  continuous and piecewise-differentiable over  [ l o ,  t , ] .  Theorem 2.1 then 
leads  to  Corollary 2.1. 

C o r o l l a r y  2.1. 
minimizing solution of the functional (l.l), it  is sufficient that there  exist 
nz functions oil ( f )  such that 

For the extremal  i j ( t ) ,  E ( t )  t o  be the absolute 
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where 

(2.12) 

E x  a m  p 1 e 2.1. Let u s  apply the above method to investigate the 
functional 

(2.13) 

F i r s t  let u s  find an extremal .  We have 

/ I  = flu - u2 + !/?. 

+= -2y: i / : u :  

Equations ( 2 . 7 ) ,  ( 2 . 8 )  a r e  written in  the form 

H u u r  -~ 2<0. 

I f  [,+nr,i (rn= 1, 2 , .  , , ) thcx unique solution of th i s  system satisfying the 
b ou II(  1 a r y  c ond i t ions i s 

y ( f )  = r r ( I )  7 $ ( t )  = 0. t E ( t o ,  t , ) .  (2.14) 
Let 

c p ( f .  y)  =cr(/)y2; 'pv- 2 cry. 

Then 

R ( f ,  fJ, U ) r  C F u I ~ - ~ I L z - ~ - I J 2 + C ~ ~ ~  ( 1  +n)y'f20y1L-U2. (2.15) 

F o r  t h r  extrema1 (2.14) t o  b e  an absolute minimizing solution, it i s  
suffic.icnt that t he re  exists a continuous function o ( i )  such that the quadratic 
fo1.m - R ( f . g .  1 1 )  be positive definite for every f E (0 ,  fl). 
sufficient condition of th i s  i s  

The necessary and 

- R,,= 2>0: R,,R,,-PRZ,,+. - 3 ( l + + d ) > , n .  

The f i rs t  inequality is satisfied identically, whereas the second imposes 

l+C?+U<O; t E ( 0 ,  I , ) .  (2.16) 

a constraint on a ( f ) :  

Thus, for the functional (2 .13 )  t o  attain a n  absolute minimum on the 
exti.ema1 (2.14), i t  is sufficient that t h e r e  exis ts  a function n ( t )  satisfying 
(2.16). F o r  example, le t  I , =  1/3.  Let n ( f ) = - - " .  It is readily seen  that 
(2.16) i s  satisfied everywhere on the segment [0, 1/31, so that on th i s  
segment ( 2 . 1 4 )  i s  an absolute minimizing solution. 

28 



Let us  find the maximal value of tl for  which the extremal  (2.14) sa t i s -  
fies (2.16), i. e., let u s  find a continuous function o ( t )  which sat isf ies  (2.16)  
over  the maximal interval(0, t i ) .  This function is obtained by solving the 
equation 

1 +$+a=O, 

and choosing a solution which is continuous over  the maximal interval 
(0, tl). The genera l  solution of this  equation is 

a(f)  =-tan(t+c). 

A par t icular  solution which is continuous over  the maximal interval is 

a=- t an  t f -  . ( F )  
The continuity interval of this  solution is (0 ,  a). 

extremal  (2.14) is the absolute minimizing solution. 
point t = x  is the conjugate of the point (0, 0) and by Jacobi's necessary 
condition there  is no minimum on the ex t remal  (2.14) for  tl>a. 

conditions "apart f rom the point tl = X I ' .  

Thus for  any fl<n, the 
A s  we know 171, the 

Our sufficient conditions in this  case  thus coincide with the necessary 

2.1. 1. 

We say  that the functional / has a s t rong local minimum on the ex t remal  

A s t rong local  minimum 

y ( l ) ,  E ( t )  i f  there  exis ts  E > O  such that 

[ I ( t ) ,  G ( t ) l < l  [ L / ( f ) ,  . ( / ) I  (2.17) 

for  all the pa i r s  (y( / ) .  u ( t ) ) E  D ,  ( y ( t )  - ,?( I )  I < F ,  everywhere on [ t o ,  111. 
Let f i  and f O  be twice differentiable functions for  any t € [ t o ,  f,]; 

(u ,  y) E V ( t )  and the se t  V , , ( t )  is an open bounded region. 
We have the following sufficient conditions for  a strong local minimum. 
T h e o r e m  2. 2.  Let the vector functions i j ( t ) .  i i ( t ) ,  ~ $ ( t )  constitute a 

solution of system (1.3), (2.4), (2.5).  Among these functions, i i ( t ,  is a 
s t r ic t  maximum of H ( t ,  u )  everywhere on [ t o .  t l ] ,  i. e., 

H ( t ,  u ) < H ( t ,  G ) ,  u E  V , , ( t ) .  u f i i ,  

Then a sufficient condition for the functional 1 to  have a strong local 

(2.18) 

and the matr ix  Il-Husuljl,s, t =  1, 2,. , . , r is positive definite. 

minimum on the extremal  ( g ( t ) ,  E ( / ) )  is the existence of n2 continuous 
piecewise-differentiable functions oij(t) which on [f,,, f , ]  satisfy tz differential 
inequalities 

Ar+j[t, o ( t ) ,  O ( t ) ] > O ,  j = 1 ,  2, . . . , n. 
Here 

(2.19) 

(2.20) 
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(2.21) 

(summation over  k is implied). 
The b a r  denotes the values of the corresponding functions for y=i j ( t ) ,  

R e  m a r k  2. 1. 
u=ii( t ) .  

The conditions of the theorem incorporate the conditions 
of negative definiteness of the quadratic fo rm 

(2.22) 

fo r  any fixed t € [ t o ,  t ,]  (summation over repeating indices is implied). 

R ( t ,  y, U )  takes  the f o r m  (2 .12) ,  where the matr ix  oi,,(t) satisfies inequalities 
(2.19). 

P r o o f .  The function q( t ,  y) is chosen in the fo rm (2.9). Then 

By (2.1) ,  there  exists E ~ > O  such that 

R( t ,  Y. u ) < R ( t ,  y(t) ,  ~ ( t ) )  (2.23) 

for  Iy-ijl < E [ .  Iu-EI < E I  everywhere on ( t o ,  t l ) .  

Now, by (2.18), we have 

R ( t ,  F, u ) < R ( t ,  V ,  Z), u C V , ( t ) ,  u#U,  

i. e., for all u cV, , ( t ) ,  with the exception of E .  

that 
Since R ( t ,  y, U) is continuous, for every fixed t t he re  exists E ~ > O  such 

K ( t ,  y, u )  < R (f, i, .> (2.24) 

,-. f o r  
IY  - i l  < €2; u 6 vu (0; Iu - LI < E?: f 6 (to, t ] ) .  

Let E b e  the sma l l e r  of the two numbers EI and F Z .  Then, by (2.24), 

R ( t .  Y, u )  <R(t,  ij, E )  ; 
(2.25) 

IY-Yl<F,  u c v u ( f ) ,  U # E ,  t E  ( t o ,  t i )  

and it follows f rom Theorem 1. 1 that the functional 1 has a s t rong  local 
minimum. 

R e m a r k  2. 2. Theorem 2 . 2  is formulated assuming an open set 
Vu . If V u  is a closed region, w e  have the following analogous 
the o r e  m. 

T h e o r e m  2. 3. Let the vector functions y ( f ) ,  E ( t ) ,  q ( t )  constitute a 
solution of systems (1.3), (2.41, (2.5). Here Z( t )  is a s t r ic t  maximum of 
H ( t ,  ij, Q, u ) .  Then a sufficient condition for a strong local maximum on 
the extrema1 ( y ( t ) ,  ii(t)) is the existence of n2 continuous piecewise- 
differentiable functions aij(t) and a number e>O such that for all nonzero 
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we have the inequality 

(2.26) 

(2.27) 

Suppose that .a solution bij(f)  of the system of differential inequalities 
(2.19) has  been found and the existence of a s t rong local minimum on the 
extremal  ( i j ( f ) ,  E ( t ) )  has thus been proved. By Corollary 2.1, the pair  
( p ( f ) ,  t i ( t ) )  is the sought solution if the function R ( t ,  Y ,  t l )  defined by ( 2 . 1 2 )  
has  an absolute, a s  well a s  a local, maximum on V ( f )  at the point ( i j ( t ) ,  - U ( f ) )  
for any t E ( lo .  f l ) .  

Note that the proof of the existence of an absolute minimum on the 
extremal  ( , q ( f ) ,  E ( f ) )  is often conducted in a straightforward manner, without 
f i rs t  proving the existence of a local minimum. This, in particular, is 
the approach used in the following two problems. 

2.1. 2.  Systems l inear  in the phase coordinates 

Let the right-hand s ides  of equations (1.3) and the integrand in (1.1) 
have the fo rm 

j ' = a : ( t ) y ' + h [ ( t ,  u); i, , = I ,  2 , . . . ,  a;  (2.28) 

p= a!(t) Y'+hO(t, u). (2.29) 

The boundary conditions are fixed: 

yo=Yof; qi =Ylf .  

Equations (2.4) and (2.5) in this  case  take the form 

41+.;ll;-.s=o; (2.30) 

H*( t ,  U ) = q i ( t ) h ' ( f ,  Z)-hO(t, U)" sup H'(t, u).  (2.31) 
u E vu (4 

Suppose that (y(f) ,  ii(t), $ ( t ) )  is a solution of (2.28), (2.30), (2.31). We 
will show that the extremal  (ij(f), Z ( t ) ) i s  an absolute minimizing solution 
of the functional over  the set D. 
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Let 
cp(t, y) =*i ( t ) y ' ,  i= 1, 2, . . . , n. (2.32) 

Then 

R ( f ,  q, U)=($iaj+j,-.'j),j + H * ( f ,  u ) = H * ( ~ ,  u). (2.33) 

Since R ( t ,  g, u )  is independent of y, using (2.31) we find for all tc ( t o ,  ti) 

R ( f ,  y, U) = s u p R ( t ,  y, u )  = p ( t ) .  (2.34) 
(U. U )  E v ( I )  

Thus by Theorem 1.1 the pair  (TJ(t), E ( t ) )  is the absolute minimizing 
solution. 

2.1. 3. The problem of the minimal mean e r r o r  

Let the right-hand s ides  of equations (1.3) have the fo rm 

fi = ai (f) g'A 6: ( f )  us, 

i, j = l ,  2 , . . . ,  n;  s= l ,  2 , . . . ,  r ,  
(2.35) 

and the functionfo(t, g, u ) i s  non-negative and convex on V ( t ) ,  t ( -  ( t o .  t i ) .  
is generally the final fo rm t o  which the problem of optimal control of the 
perturbed state of a system near  some given state y( f )  = O  is reduced. 
Equations (2.35) a r e  thus the equations of the perturbed state, and the 
function (1.1) is a measu re  of deviation of the system from the given state.  

This 

Equations (2.4), (2.5) defining the extremal have the fo rm 

$1 + ai+i - f i j  = 0;  (2.36) 

N ( f ,  Y(f) ,  +(t ) ,  u)= sup H.( f ,T ( t ) ,  f+(t), u).  (2.37) 

We 

- 

E V U ( O  

Suppose that ( g ( t ) ,  E ( t ) ,  $ ( t ) )  is a solution of system (2.35)-(2.37). 
will show that the extremal  ( i j ( f ) ,  E ( f ) ) i s  an absolute minimizing solution. 
We take (1 ( t ,  y) i n  the form (2.32). Then 

R ( f ,  q ,  U)=(f+jaf+rjj, ~ ' + + i  (t)b:u5---fO(t, y, u). 

The function R (1, y. U) for every fixed t is convex and it thus has  a single 
supremum g. U onI/(t). Therefore, by Theorem 1.1, the pair(i j( t) ,  G ( t ) ) i s  
an absolute minimizing solution. 

2. 1. 4. Jacobirs necessary and sufficient condition 
of the variational calculus 

Using the particular ca se  of a very simple functional, we will establish 
a relationship between the conditions of a maximum of the function R and 
Jacobi 's  variational condition of a weak local minimum of a functional. 
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Consider the problem of minimizing the functional 

1 ,  f = s  f o ( t ,  y, U) d f ;  
i o  

(2.38) 

y=u, 
yo, y, are given, 

where y(f), u ( t )  are sca l a r  functions, fo ( t ,  y, u )  is a continuous function 
with continuous partial  derivatives t o  third o rde r  inclusive. 

Let V ( t )  with f € ( t o ,  f,) be an open domain. 
Let the functions q(f, I/) have continuous partial  derivatives with respect  

The function R is written in the fo rm 
t o  t and y t o  third o rde r  inclusive. 

R ( f ,  y, u)=(puu-- fo( f ,  Y, u )  + ' ~ i ( t ,  y).  (2.39) 

For sup  R with respect to  LJ and u to  be attained on the pair ( J ( I ) ,  E ( f ) )  ED, 
it is necessary that 

(2.40) 

Note that conditions (2.40), together with equation (2.38), a r e  equivalent 
t o  Eu le r ' s  equation (which may be obtained by eliminating + and u between 
the appropriate equations). 

f o r m  
The next necessary condition of a maximum of R is that the quadratic 

d 2 R = 1 7 U u A y 2 + 2 1 7 y u . l j y ~ ~ + ~ , , A u z  (2.41) 

be non-positive; he re  ba r s  denote the values of the second-order derivatives 
corresponding to  the pair(i j(f) ,  U ( i ) ) .  

Setting a(t) =quv(f, j j ( f ) ) ,  we obtain 

(2.42) 
(2.43) 

(2.44) 

Let y ( f )  be a continuous function. 
A quadratic fo rm is non-positive if  and only if  the diagonal minors of the 

Then o(I )  is also continuous. 

matr ix  

are non-negative 141. Using (2. 42), we can thus write 

(2.45) 

(2.46) 
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The f i r s t  inequality in (2.45) is Legendre's  well-known condition. Let 
u s  consider in some detail condition (2.46): this is a differential inequality 
involving the function a(t). 

u(t) is quite a rb i t ra ry ,  condition (2.46) can always be satisfied on a 
sufficiently sma l l  interval ( t o ,  t i )  by an appropriate choice of the initial 
conditions a(to) andu(to). 
entire interval(t0, t i ) ,  we write it in the f o r m  of a Riccati equation for the 
function u(f):  

Let ?I),, > O  everywhere in[&, tl]. Note that since 

To check whether or  not (2.46) is satisfied on the 

(2.47) 

where ~ ( 1 )  >O is some continuous function of f .  
of differential equations that the singular points of the solution of (2.47) 
(the points where a(t) does not exist) coincide with the ze ros  of the non- 
t r iv ia l  solution of the second-order homogeneous l inear  equation 

We know f rom the theory 

which is obtained f rom (2.47) by a transformation 
-0 0 - 

o-fu11=- Eli. 
For E = O  equation (2.48) reduces t o  Jacobi's equation /2/  

(2.48) 

(2.49) 

(2.50) 

Equation (2.48) will be investigated using Sturm's theorem and the 
theorem of the alternating ze ros  of solutions of second-order l inear 
homogeneous equations. 
that the maximal interval (to. t l )  on which the solution v(t)of equation (2.48) 
does not vanish for  a given ~ ( t )  corresponds to  the solution which sa t i s f ies  
the initial condition u ( f 0 )  =O; in other words, it corresponds to  a solution 
with one of the zeros  coinciding with the left-hand end point of ( t o ,  t l ) .  Let 
th i s  solution be designated v ( t ,  to). Sturm's  theorem leads to the following 
proposition. 

equations (2.48) with any ~ 2 0 ,  the maximal interval ( t o ,  f) on which the 
solution u ( t ,  to)  does not vanish corresponds t o  Jacobi 's  equation. 

In other words, under the above donditions, for & ( t ) > / O ,  the next ze ro  
of the solution of (2.48) on the right of io is no far ther  f rom to than the 
corresponding ze ro  of the solution of Jacobi's equation, generally called 
the conjugate point of t=to. 

a( t )such that condition (2.46) is satisfied on (fo, t l ) ,  the interval ( t o ,  ti) 
contains no points conjugate t o  0, th i s  being Jacobi's necessary condition 
for  a minimum of the functional (2.38). 

contain points conjugate to  to ,  there  exists a function & ( f )  2 0  such that the 
solution u ( f ,  to)  of equation (2.48) does not vanish anywhere in ( t o ,  f l ) .  

If ti is the conjugate of to, we have ~ ( t )  0. Then the re  exists a 
corresponding solution of Riccati 's equation or, in other words, a function 
u ( t )  such that (2.46) is satisfied. 

The theorem of the alternating ze ros  indicates 

Let v ( t0 )  = O  for equation (2.48) for  any ~ ( t )  >O. Then among all the 

Thus, if  Tp, >O and the re  exists a continuous and differentiable function 

Conversely, the comparison theorem shows that i f  ( t o ,  t ~ )  does not 
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I 

Let u s  consider the conditions of negative definiteness of the form (2.41), 

namely that everywhere in[to, f l ] ,  fiu >0, and on ( t o ,  f l )  there  exis ts  a function 
U ( t )  such that the strengthened condition (2.46) (the s t r ic t  inequality) is 
satisfied or, equivalently, & ( t ) > O  on ( t o ,  t l )  in (2.47) and (2.48). The form 
(2.41) is then negative definite. We will show that when these conditions 
a r e  satisfied, the segment [ t o ,  t l ]  does not contain points which a r e  conjugate 
to  t o .  

Suppose that this  is not so, i. e,, ti  is the conjugate of to  (the interval 
( f o ,  tl), as we have seen before, contains no conjugate points) and v ( f ,  f o )  
vanishes at t l .  Then for any e ( t ) > O  the neares t  zero  of the solution of 
(2.48) is nea re r  than t l ,  lying inside the interval  ( f o ,  f l ) .  This signifies 
that the quadratic form d2R cannot be negative definite, at variance with 
the conditions of the theorem. 

Conversely, let 7:,,>0 on [ t o ,  tl] and let [to,  tl] contain no points which are 

[ to,  t l ] ,  there  exis ts  6>0 such that the 
conjugate to  t o .  
not vanish on the half-open interval 
solution of equation (2.50) does not vanish on ( t o ,  t 1 + 6 )  either. 

differential equations on parameters ,  there  exis ts  a constant E > O  such that 
the solution of equation (2.48) does not vanish on [ to,  f , ]  either. Hence i t  
follows that a function o ( f )  satisfying the strengthened condition (2.46) 
exis ts  on ( to ,  i l) .  

Since the solution of Jacobi's equation for  v ( f o )  =O does 

Because of the continuous dependence of the solutions of l inear  

We have thus proved the following theorem. 
T h e o r e m  2 .  4 .  Cons iderapa i r  (?j(f), ii(t)) D ,  where Z ( f )  iscontinuous 

and T:u > O  everywhere in [ t o ,  tl]. 
the existence of a continuous and continuously differentiable function o ( f )  
such that for  any fixed t t  ( t o ,  f , )  the quadratic form 

A necessary and sufficient condition for 

d2R= R , , , , A U ~ + ~ R ~ ~ ~ A ~ A U  +R,,Ay2 

is negative definite is that for the pair J ( t ) ,  E ( f )  the interval ( l o ,  t l )  ( o r  the 
segment [ t o ,  t l ] )  contains no points conjugate to  to. 

Thus for a nondegenerate ( [ tu  # O )  classical  Lagrange 's  problem, the 

condition of a non-positive quadratic form 

(2.51)  

is equivalent t o  Jacobi 's  necessary condition of a weak local minimum, and 
the strengthened condition (2.51) is equivalent to Jacobi 's  strengthened 
condition. However, the region of application of condition (2.51) or of its 
extended vers ion (2.27) is much wider than of Jacobi 's  condition: they a r e  
applicable to  degenerate problems (when the determinant vanishes, 
IHUrui  ( f ,  ij, E) I = O  ) and to  problems with a closed region V,, ,  where 

Jacobi 's  condition does not apply. Note that it is for these  problems that  
the analysis of the second-order conditions is especially important. 
are needed not only for  checking purposes, but are actually used 
constructively, since they provide a means f o r  isolating the local  minimizing 

They 
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solution f r o m  the se t  of all extremals  ( in  these cases, as distinct f rom the 
case  of nondegenerate problems, the ex t remals  are not unique). 

E x  a m p  1 e 2. 2. 
the functional 

As an example of such a problem, le t  u s  minimize 

I y=n; luI S l ;  
l J ( - - l )=y( l )=O.  

FIGURE 2 . 1  

Conditions (2.4), (2.5) take the form 

(2.52) 

(2.53) 

(2.54) 

The las t  condition corresponds to  three  types of control: 

+ I  for qJ>o 
-1  for qJ < 0 (2.55) 

arbitrary within the limits I U I < 1 for $ ze 0. 

It is readily seen  that conditions (2.52), (2.53), (2.55) a r e  satisfied by an 
infinite s e t  of ex t remals  (Figure 2.1), which differ f rom one another in the 
number of control switching points and the number of isolated zeros  of the 
function $ ( t ) .  
thi rd control type in (2.55). 
andinserting(2.53), we find y ( t )  0. 

a more  detailed investigation of the maximum of R ( t ,  y, u )  is required. 

The initial segment of each extrema1 corresponds to  the 
Indeed, differentiating the identity + ( t )  = 0 

To select  the absolute minimizing solution f rom among these extremals, 
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We have 

(2.56) 

FIGLIRE 2. 2 

Here cp(t, y)  is regarded as a thr ice  differentiable function. 
We seek a solution of the problem satisfying the condition of the 

fundamental theorem. Such a solution i j ( t ) ,  G ( t )  should satisfy the con- 
dition 

R ( t ,  q, G ) & R ( t ,  y, u )  (2.57) 

for all (g, u)  (i. 
Here G i s  a horizontal s t r i p  on the y, u plane between the straight l ines 

u = " l  (F igure  2.2). 
par t icular  for (2.57) to be satisfied on a thin s t r i p  G ,  enclosing the segment 
[-1, + 1 J of the ver t ical  line y= i j  i n the  (y. u )  plane. 
+ # O ,  we have u = + l .  The necessary  condition for th i s  is 

F o r  (2.57) t o  be satisfied on G, it is necessary in  

F o r  those t when 

or, seeing that j = i i ,  and writing 

we obtain 
(2.58) 

In G, we need only retain the f i r s t  t e r m s  in the expansion of rp and R 
i n  powers of Ay=y-Y, and we may thus wri te  
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We s e e  f rom the las t  formula that for  g=O the function R(y,  U) has a 
supremum on G, at the points (fj, 1) and (ij, - 1 )  for  a=O only. Thus, for 
condition (2.57) to  be satisfied for  t c(-l, + I ) ,  it is necessary that there  
exis ts  a continuous function o ( t )  satisfying (2.58) which vanishes for  those 
t when g = o ,  i. e., at the switching points. It follows f rom (2.58) 
that for  t >O , a increases  and consequently there  may exist only one t=%, 
for  which o=O, i. e., (2.57) is satisfied only by an extremal  containing at 
most one switching point with a positive abscissa .  The  only such 
extremal  is extremal  2 in Figure 2.1. 

a maximum in t/ in a small  neighborhood se lec ts  a single extremal  - 
extremal  2 - f rom among an infinite number of extremals .  
is readily shown to satisfy the conditions of Theorem 1.1. 
in the form 

Thus, the necessary condition for  the existence of a(t) for  which R has 

This extremal  
Let cp be given 

'p ( f ,  Y) = ** (4 Y + y ( Y  - G ( V >  (2.59) 

where n(t) is a continuous function sa.tisfying inequality (2.58) and the 
condition u(f:2r) =o, u ( t ) ~ O  for t<t;*' .  
sat isf ies  ( 2 . 5 7 )  for any t ,  whence it follows that extremal  2 is an absolute 
minimizing solution. 

Then R is a quadratic form and 

2.1. 5. General boundary conditions 

1. Let the se t s  V,(to) and V , ( ~ I )  be some general  s e t s  in the space Y ,  
and not the points $0 and y1 a s  assumed before; tl may take values f rom a 
given bounded set  T. The function F ( t 1 ,  gI. yo) entering (1.1) is continuous 
and differentiable. In this  case, additional conditions (1.24) of Theorems 
2 . 1  - 2 . 4  a r e  imposed on the sought minimizing solution Y ( t ) ,  E ( t )  and the 
function cp(t, y ) ,  which demand that the function @(yo, y I ,  t , )  have a minimum 
for yo=jo. yl=ij , ,  f l=t l  and that p ( t ) = O .  

A necessary condition for a minimum of @(t l ,  yl ,  go) a t  the point 
? I .  YO, y I  is provided by the inequality 

(2.60) 

for all 

- - 
where Al/o=l /o- -o ;  A!/l=gl-yl; A f l = f , - f t ,  a r e  a l l  sufficiently smal l  (the 
bar denotes the values of the derivatives for  yi=?ji, t l = r ~ ) .  

Using (1.8), we write (2.60) in a more  explicit form: 

38 



Using the notation from ( 2 . 1 )  and (2.6), and seeing that in virtue of the 
identity p ( t )  = 0 

- 
av ( f * - i  (0) = f O  - a y  ~~ f ( f ,  ;, ;) = 

at (19 

= - H ( t ,  At) ,  9 P ) ,  Z ( t ) ) ,  

we finally obtain 

for  all 

This inequality, together with the conditions yo€ V, ( fo ) ,  y, E V , ( t , )  and 
L E T ,  specifies 2n+ 1 boundary conditions for  the sys tem of differential 
equations (1.3), (2.4), (2 .5 )  and a finite value of the argument t l .  

the particular s e t s  t, V,( t , ) ,  and V , ( / O )  a r e  defined explicitly. 

in space, inequality (2.60) did not impose any constraints on the vectors  
11) ( f o )  , 4) ( t ~ ) ,  since 

These boundary conditions can be written in a more  concrete form i f  

In our previous example, when the se t s  were identified with fixed points 

hLJo=A1/I=At,=O 

Another common type of boundary conditions corresponds to  the following 
case: yo is a fixed point, the set V , ( f , )  coincides with the ent i re  space Y ,  
i. e., there  a r e  no constraints on ~ 1 ,  and the set  t corresponds to  the 
semi-infinite interval ( t o ,  00) .  In this  case, for inequality (2 .60 )  t o  be 
satisfied, the coefficients before Ai/, and A t ,  must vanish, i. e., 

(2 .62 )  

(2.63) 

These equalities define the n+ 1 missing boundary conditions for  the 
system (1.3), (2.4) and the t ime t , .  

When investigating the sufficient conditions for  a minimum, the condition 
of a minimum of @((yo, y I ,  t r )  imposes additional boundary conditions on the 
differential inequalities for  the functions oij(t). They may be derived f rom 
the inequality 
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(2.64) 

which should be satisfied for  all sufficiently smal l  non-zero increments  
Ago, A Y I ,  At ,  when 

Summation over  repeating indices is assumed throughout. 
For the previously considered particular case - the problem with a f ree  

right-hand end point - inequality (2.64)  is equivalent to  the condition of 
positive definiteness of the quadratic form 
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2.1. 6. Numerical aspects  

Lagrange's method thus reduces the variational problem to finding the 
extremal  ( y ( t ) ,  E(t))and a vector function $ ( t )  , i. e., to  solving a sys tem of 
ordinary differential equations of order  2n with boundary conditions (2.61),  
followed by verifying the sufficient conditions of optimality on this  extremal, 
e. g., by solving the differential inequalities (2.19)  for  the functions uij(t) .  

It is significant that the boundary conditions a r e  separated, i. e., some 
of them correspond to  the value t o  of the argument, while the remaining 
boundary conditions correspond to  t l .  The resul t  is a boundary-value 
problem, a s  distinct f rom the Cauchy problem, when all the boundary 
conditions a r e  specified for  the same value of the argument, t o  o r  tl . The 
majority of the modern computation algorithms solve a given boundary- 
value problem by constructing a sequence of solutions of Cauchy problems 
obtained by varying the missing initial conditions until the required final 
conditions a r e  satisfied. 

for  sys tem (1.3), (2 .4 )  by Euler ' s  polygonal method. 
method, the segment [ t o ,  t l]  is divided into s par t s  by the points 
ri=io. T Z > T ~ ,  T ~ > T Z .  .. . T , = ~ I .  Given g ( f o ) .  $(fo), we find .(to) f rom the 
condition of the maximum of the function H ( f ,  y(fo), $ ( t o ) .  u)and, inser t ingthe 
result on the right in (1.3), (2.4), we obtain y( t , )  and $ ( t o ) .  
difference formulas of Euler ' s  method 

Let us  consider the actual procedure for  solving the Cauchy problem 
According to  this  

The finite- 

a r e  then applied to  determine y( t2)  and $(z2). 
we find 

Reiterating the procedure, 

Y(T3). fk(T3). . . . 3 Y ( f l ) ,  9(4). 

In solving the boundary-value problem, this  procedure is repeated for  
var ious values of y ( t o ) ,  
with sufficient accuracy. 

consuming, even with modern computers. 

y ( t o ) ,  $ ( t o )  and often markedly reduce the volume of computation. 
improved methods include Newton's method 1 3 1 ,  the method of fas test  
descent 191, random access  methods 1 5 1 .  However, even with these 
methods, the solution of boundary-value problems involves significant 
difficulties, especially a s  none of them is absolutely reliable. 

tained in this  way may prove not to  be the sought minimizing solution, 
since equations (1.3), (2 .4) ,  (2.5) only give the necessary conditions for  a 
maximum of R . 
tackle the second part of the problem, namely the verification of the 

$ ( t o )  until y ( t l ) ,  i l ) ( f , ) ,  tl satisfy the final conditions 

This explains why the solution of boundary-value problems is so t ime 

Various methods exist which cut down the sea rch  for  the initial values 
These 

It should be emphasized that despite a l l  the efforts, the extremal  ob- 

No adequate algorithms a r e  available so far which would enable u s  t o  
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sufficient conditions. In a number of cases,  this problem is solved 
relatively simply by choosing an appropriate function cp, as in 2.1.2 and 
2.1.3 above. In other cases ,  the solution can be simplified by using 
inequalities (2.19) for  o i j ( f ) .  

I 2.2. HAMILTON-JACOBI-BELLMAN METHOD. 
OPTIMAL CONTROL SYNTHESIS 

In the present treatment, we choose a fixed t l  and make V , ( f )  coincide 
with the en t i re  space Y for tc ( t o ,  f l ]  
F ( g l ,  go) is independent of yo. 

We construct the function 

and with the point g=go for f = t o ;  

and t r y  t o  select  q( t ,  g )  so that P is independent of g , i. e., 

(2.65) 

(2.66) 

where C ( f )  is an a rb i t r a ry  piecewise-continuous function. 
Let E ( t ,  g )  be the value 

of u for which R( t ,  g. u )a t ta ins  a supremum at the point t ,  g ,  i. e., 
Then P ( f ,  g) = p ( f )  at any point of the space Y . 

R(t ,  y, E )  = P ( k  Y) (2.67) 

and let y ( f )  be the solution of the system 

r i = f [ f *  g7 E ( f ,  911 (2.68) 

with the boundary condition g ( 0 )  =go;  also let  k ( f )  = E ( t ,  y ( t ) ) .  The pair  of 
vector functions ( y ( f ) ,  E ( f ) )  belongs to  the class  D and satisfies condition 1 
of Theorem 1.1. For  th i s  pair  to  satisfy condition 2 of this theorem, i. e., 
t o  be an absolute minimizing solution, it suffices t o  take 

F(y) i -cp( t I ,  g )  =const, (2.69) 

i. e., it is sufficient that for  f = f l  the function F t c p  be independent of y . 
Thus, i f  the function q ( f ,  9 )  can be selected so that sup R is independent of 

y, or more  precisely, i f  we can solve the partial  differential equation 
(2.66) with the boundary condition (2.69), our problem is completely solved. 
Moreover, a much more  general  problem is solved, namely how, start ing 
f r o m  any given state ( t o ,  go) Ev, t o  reach the least value of the functional 
(1.1) in  a t ime  ti. TO accomplish this, at  every point (t ,  y), start ing with 
(to, go), we choose a control function E ( f ,  y ) .  If c p ( f ,  g) is known, E ( f ,  y) is 
obtained f r o m  (2.66). The function y ( t )  is then found f rom (2.68). 

solution of the variational problem constructed in th i s  way as t h e  

U 

Using the terminology of the automatic control theory, we r e fe r  to  the 

42 



o p t i m a l  c o n t r o l  s y n t h e s i s ,  and to  the field E ( t ,  y) a s  the 
s y n t h e s i z i n g f u n c t i o n . 
control function Z ( t )  corresponding to the given initial conditions ( t o ,  yo) 
is called the o p t i m a l  c o n t r o l  p r o g r a m .  

These two fo rms  of solution of the problem correspond to  two fundamen- 
tally different methods of practical optimal control. The synthesis solution 
is implemented by a closed automatic control sys tem ( a  feedback system).  
In this  system, the synthesizing function is regarded as an algorithm which 
determines the response of the feedback operator  t o  the signals f rom the 
sensor  e lements  measuring the t ime and the current  s ta te  of the controlled 
object (F igure  2 .3 ) .  

feedback, a s  shown in Figure 2.4. 

In distinction f rom synthesis, the optimal 

The control program solution is implemented by an open system, without 

Controlled object 
Y=f (t ,y. u )  

Controlled object 

Feedback a) 
FIGURE 2.3 FIGURE 2.4 

The method described above is in fact the Jacobi-Hamilton method 
whereby variational problems a r e  reduced to  par t ia l  differential equations. 
Equation ( 2 . 6 6 ) ,  apart f rom the a rb i t ra ry  function C ( t ) ,  coincides with 
Bellman's equation f 1 f .  

Theorem 1.1 with a function cp(t, y) of special  form.  At the same time, 
this  equation constitutes a sufficient condition of an absolute minimum. 

Bellman's equation is thus obtained a s  a particular case  f rom 

2.2.1. Optimal control synthesis for sys tems l inear  in 
the phase coordinates 

Let the right-hand s ides  of equations ( 1 . 3 )  and the integrand in (1.1) have 
the form 

n 1 f k = Z  a , k ( f ) y ' + h k ( t , u )  ( i , k = l , 2  ,..., n); 
1 = 1  I (2.70) 

or  in vector notation 
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f = A ( t ) y + h ( t ,  u); fo="'(t)y+ho(t, u), (2.71) 

where A ( t )  =Iluf 11 is the matr ix  of the coefficients (i, k =  I ,  2 , .  . . , n) .  
set I/, is assumed to  depend on f alone. 

V,( t )  are the same as in the previous section. 

The 

O u r  object is again t o  minimize the functional (1.1). The conditions on 
Let 

F(y  ) =hy , (2.72) 
n 

where X=(AI ,A, ,  ..., A,,) is a given n-dimensional vector; A y = Z  X,yf is the 

sca l a r  product of the vectors  A and y . 
Inserting (2.71) in (1.9), we obtain 

i = l  

R ( t ,  Y, U) = (A*q,--aO)y+cpt(t, Y) +qvh(t,  U ) - h O ( f ,  U), 

where A* is the transpose of matr ix  A ,  i. e., A*=llaL 1 1 .  
Now from (2.66) 

In o rde r  to  satisfy equation (2.661, we have to  choose q ( f .  y)  so that the 
function P is independent of y . 

We seek in the form 

cp=!J(f)Y. (2.74) 

Inserting (2.74) in (2.73), we find 

f =(++ A"+- a") y t &((t); (2.75) 

The vector function $ ( t )  is defined by the equations 

I b +  A* ( t ) + = ~ @  ( t ) ;  
qJ(t,)= --h. 

(2.76) 

The function P ( t ,  y) =A?' ( t )  is then independent of y and @(y) =Ay+ 
+q(t,)y=O, i. e., conditions (2.66) and (2.69) imposed on cp(t> y) are 
satisfied. The sea rch  for  the function q ( t ,  y) is thus reduced t o  the 
solution of a Cauchy problem for  a system of l inear differential equations 
(2.76) with initial conditions (2.69). 
equations (2.76) are integrable in a closed form. 
we find the optimal control function Z ( f )  f r o m  equation (2.76), which in ' this 
case has the fo rm 

If A and u0 are independent of t ,  
Given the vector $(f), 

$ ( t ) h ( t ,  E)-hO(t, ti) =.E ( t ) .  
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Let 
Izk = b k  u ( k = O ,  1 ,  ..., n ) ,  

where u i s  a sca l a r  (i. e., r = l )  constrained by the inequality l u l < l ,  b k ( t )  
a r e  continuous functions on [ t o ,  t i ] .  We have 

Here b= (b l ,  b*, . . . , bn)  . We have 

E ( t )  = I  for  a l l  t when +(t)b-bO>O; 
G ( t )  =-I for  a l l  f when +(t)b-bO<O. 

The equation 

Il ,( t)  b-b"=0 

defines the se t  of "switching points." 
The problem of the optimal approach to  the hyperplane t=f l  f rom any 

position go i s  thus completely solved for the particular case  when 
f f  ( i = O ,  1, . . . ,  n )  a r e  l inear  functions of the phase coordinates. 

2. 2. 2. Algorithmic features  of the method 

The Hamilton- Jacobi method reduces the variational problem to the 
solution of a Cauchy problem for a second-order par t ia l  differential 
equation for the function cp(f, y). 
t e r i s t ic  features. 
and cpt , and does not contain the function cp itself. All the partial 
derivatives, except c p 1 ,  enter  the equation nonlinearly, because of the 
nonlinear operation of the supremum over u . 
solvable for  the partial derivative c p t ;  the boundary conditions a r e  
defined on the hyperplane t=tl in the (if, g) space. Because of the 
las t  two factors, the argument t occupies a preferential position among 
the n f l  arguments of the function cp and makes it possible to construct the 
solution of the problem in the direction of decreasing t , starting with tl . 

The solution algorithm, unlike that of the Lagrange's method, is thus 
independent of the boundary-value problem. This is one of the principal 
advantages of the method. Another advantage is that the solution of the 
par t ia l  differential equation ( 2 . 6 6 )  completely exhausts the solution of the 
variational problem: any pair ( i j ( t ) ,  E ( t ) )  constructed by this  method is 
the absolute minimizing solution, whereas in Lagrange's method the 
solution of the boundary-value problem for  the corresponding system of 
differential equations only constitutes the f i r s t  s tep toward the solution of 
the problem, a s  it remains  to  verify whether or  not the extrema1 obtained 
in this way is indeed the absolute minimizing solution. Finally, an obvious 
advantage of the method is that i t  solves the optimal synthesis problem, 
which constitutes a much more  general  problem than the simple sea rch  for  
a single pair ( y ( t ) ,  i i ( t ) ) .  

This problem has a number of charac-  
Equation (2 .66 )  contains only the par t ia l  derivatives cpv 

Equation (2 .66 )  is always 
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The g r e a t e r  generali ty of the result, however, is an outcome of the 
g rea t e r  complexity of the algorithm: instead of a system of ordinary 
differential equations, as in  Lagrange's method, we are  dealing with a 
par t ia l  differential equation (2.66). No regular numerical  methods are 
available fo r  such an equation. 
solutions of equations of th i s  type are known either. 

optimal synthesis. 
schemes are described in the next section. 

A shortcoming of th i s  method compared t o  Lagrange's method is that its 
application is more  restricted.  
reference t o  a particular c l a s s  of problems, the so-called problems with a 
f r ee  right end point. 

be approximately reduced t o  this particular problem by an appropriate 
modification of the functional. F o r  example, problems with a fixed right 
end point (fixed yl ) for  a functional I a r e  readily reduced to  problems with 
a f r ee  right end point for  the functional 

Moreover, no existence theorems for  the 

It is therefore desirable t o  develop suitable methods for approximate 
A general  approach to  this task and one of the particular 

It is not by chance that it is described in 

However, numerous problems with a se t  V,of a different s t ructure  may 

where y:f are the fixed values, gf, h, a r e  sufficiently large positive numbers. 

§ 2.3.  THE METHOD O F  APPROXIMATE OPTIMAL 
CONTROL SYNTHESIS 

2. 3 . 1 .  Statement of the problem 

In virtue of the equations 

Q=f( t .  Y? u )  

the value of the functional 

(2.77) 

(2.78) 

is given i f  the initial point ( t o ,  yo) and the control program u ( f )  on [to,  f,] 
are given. Let 

d(to,vo)= inf 1 [ t o ,  yo, U (41, (2.79) 
{ U  ( I ) }  

where ( u ( t ) }  is the se t  of all the admissible control functions on [to,  t l ] .  

A function u ( t )  is considered admissible if there  exists a function y ( t )  
such that the pair  (y(t),  u ( t ) )  ED. 
solution of the system of equations 

The la t te r  relation implies that the 
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for all tc [to,  tl] belongs t o  V,(t) and u ( t )  EV,(t ,  y ( t ) ) .  
{ u ( t )  } is not empty. 

exists a sequence 

It is assumed that 
In virtue of the definition of a lower bound, t he re  

( U U ( t ) }  c { u ( t ) ] ,  

such that 

I [ f o ,  YO, ~=( f ) I -d ( fo ,  YO) f o r  ~1-00. 

For every fixed initial point ( t o ,  yo) we have to  select  such a sequence 
In other words, we have t o  f r o m  a cer ta in  given se t  vYo in the space ( t ,  y) .  

solve the previously stated problem for all t o  and yoEVyo.  
Let f o m h  be the minimal t o  corresponding to  the se t  V,O. 
The se t  V y ( t ) ,  t€[to,  t l ] ,  in each of the resulting problems is defined as 

follows: each t €[tomin, t l ]  is assigned t o  a se t  Vy,(t)  and it is assumed that 

Our problem is solved once we have constructed a minimizing sequence 
of synthesizing functions ua ( t ,  y) t [ tomin,  211, y e  V,,( t )  . A sequence uo ( f ,  y) 
of synthesizing functions is said to  be a minimizing sequence i f  the sequence 
of the control functions 

belongs t o  the se t  of admissible control functions and constitutes a 
minimizing sequence for any to ,  yo E V,O. 
system (2.80) with the initial conditions y(to)=yo for u=u,(t,  y ) .  

the ( n+ 1)-dimensional space ( t ,  y), construct a minimizing sequence of control 
fields { u ,  ( t ,  y) } for the functional (2.78). 

synthesis. 

Here & ( t )  is the solution of 

The problem is finally stated in the following form: in a region Vuo of 

Every element of this sequence will be called an approximate optimal 
The degree of approximation will be measured by the number 

Evidently, a, -0 for a-oi). 
The following theorem enables u s  t o  es t imate  the accuracy of the 

Consider a function cp(t, y) which is continuous and differentiable for 

ii(t,Y,u)=~Y(t,y)f(t,y,U)-fO(t,y,lL) t;. (2.81) 

synthesis without solving equation (2.65). 

t E  [ tomin,  f11, YE Vy1 ( t ) .  Given @ ( t ,  y) , we can construct the function 

Let E ( t ,  y) be the control function for which & attains i t s  maximum 
value on V,(t, y), i. e., 
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and 

(2.83) 

(2.84) 

Let fo r  all ( t o ,  yo)EVyo and t ( t o ,  t l )  

y(t, to. Yo)€  V,( t ) .  
Let further 

- f I  - 
sup / J ( t , g ) -  inf F ( t , y ) I d t +  sup  6(y) - -  inf %(g). (2.85) 

The functional (2.78) over the field of control functions 
",s 0 niin ' Y E V y I t )  Y EVY( t I Y W Y ( f  8 )  Y E V y ( f ,  1 

T h e  o r e m .  
E ( f ,  y) satisfies the following estimate: - 

I 1  ~ ~ o ~ Y o ~ ~ ~ ~ ~ l - - ~ ~ o , Y o ~ l , <  (fOlS2. (2.86) 

Here Z ( t )  = Z ( f .  p ( f ) ) ,  g ( t )  i s  the solution of (2.80) for f l = E ( t ,  y ) .  
P r o o f . Consider the functional 

(2.87) 

defined over the s e t  E of the independent pairs  of vector functions ( ~ ( t ) ,  ~ ( t ) ) .  
This functional has  the following property: on the se t  D ( E of the pairs  
( y ( t ) ,  u ( t ) )  satisfying equations (2.80), L = l  for any c p ( f ,  y ) .  

Let - 
L [ Y  (f)& (41 = L [ Y  (t)$ (t)?;(f,Y)l; (2.88) 

We have 

where 

Seeing that 

(2.89) 

(2.90) 

(2.91) 
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and using (2.85), (2.87), and (2.90), we obtain 

we have - -  
.L lu(0, (01 = I [to*%,"41, 

and thus - 
I [to,y,,ll (01 -z,<. 

I /  [~,,yo,u(t)l--dcf,,rl,)I~~. 

Since D C E ,  we see  that d(fo ,  yo)>T and, using (2.93), we find 

- 
Q. E. D. 

C o  r o 11 a r y  . Consider a sequence 'p. ( f ,  y) such that 

(2.93) 

(2.94) 

A a  =A(cp. 1-0 (2.95) 

The sequence of the control fields u, (f, g) is then a minimizing for a-03 . 
sequence. 

given and the paths y a ( t )  corresponding to  c p . ( f ,  y) a r e  seen, in virtue of 
(2.80), (2.82), and (2.83), to  satisfy the condition 

If a par t icular  construction of the sequence cp.(t, y) satisfying (2.95) is 

the corollary implies that a regular  algorithm for  the construction of the 
control synthesis i i a ( f ,  y) is also given, which for sufficiently large cy is a s  
close as we des i re  to  the optimum control synthesis. 
theorem provides a specific es t imate  (2.94) of the closeness of the synthesis 
E, ( f ,  y)  t o  the optimal synthesis. 

In practice, the proposed method of construction of the minimizing 
sequence u , ( f ,  y) is implemented as follows: the sequence rp.(t, y) is 
constructed so that A. -0 for  a-w , and condition (2.94) is verified a 
posteriori, after the construction of the synthesis u . ( f ,  y) . For this  
method of solution to  be successful, the se t  V , , ( t )  should correspond to  a 
sufficiently la rge  region of the space Y .  Also note that i f  the set  V,l( t )  
in the initial statement of the problem coincides with the ent i re  space Y ,  
i t  should be replaced by a bounded region t o  permit searching for  the 
supremum in (2.91) in practice. 
that condition (2.94) is satisfied. 

may be considered as an approximate method of solution of the par t ia l  
differential equation (2.82). if cp.(t, g) is convergent in some norm. In our 
formulation, however, the question of the convergence of c p . . ( f ,  g) does not 

Moreover, the 

V , , ( t )  should remain sufficiently la rge  so  

R e  m a r k  . The construction of the sequence 'p. ( t ,  g) satisfying (2.95) 

49 



arise. The sequence CP. (f, y). and hence E(f, y), may have no limit. The 
only requirement is that (2.95) be satisfied by the exact solution and that 
A, be sufficiently small for  some a when the solution is approximate. 

2.3.2. Construction of a minimizing sequence 

As a particular example of the construction of a minimizing sequence, 
cp.(t, y) is defined as a polynomial with consider the following technique. 

known coefficients +(1 )  : 

Expression (2.96) for cp. contains a=l l .& . . . 2, a rb i t r a ry  continuous 
functions $ i , i 2 . . . l n  ( f )  which are selected s o  as t o  minimize A =  in some way. 
To this end, we define N supportingcurves y=yp ( f )  which a r e  arranged 
in V,(t) for  each t in the following manner. The range of each variable 
y i  corresponding to  V,(f) is partitioned into segments by laying off 21 
points on the y1 axis, 12 points on the y2 axis, etc. Hyperplanes 
perpendicular to  the corresponding axes a r e  passed through these planes. 
The intersections of all these hyperplanes'give N = l 1 -  12 . . . I, tabular 
points. Repeating the s a m e  construction for every t ime t and ensuring 
continuous t ime-variation of the coordinates of the tabular points, we 
obtain a family of supportingcurves y=ys(t) . In practice, the construction 
of supportingcurves should make use of families of curves  which have a 
convenient analytical description, such as the family of straight l ines 
y ( t )  =Alt+Az, the family of parabolas y=A,t2+A2f+Ao.  the family of 
polygonal lines, etc. 

and (2.83) a r e  satisfied on the supportingcurves only, we obtain the following 
system of differential equations and boundary conditions for  the functions 

Inserting the expression for cp. ( t ,  y) in (2.82) and demanding that (2.82) 

v (4 : 

(2.97) 

Here cp(f, y) is defined by (2.96), and c p g i  ( t ,  y) is the partial  derivative 

F r o m  the point of view of numerical  work, the a rb i t r a ry  function of 
of (2.96) with respect to  y'. 

t ime K ( t )  and the constant Kl are conveniently set  equal t o  zero, K(1)=0, 
K1 = 0 .  
reference curves.  
differential  equations in the unknown functions $ , ( f ) .  

The number of equations (2.97) then coincides with the number of 
System (2.97) comprises  N f i rs t -order  l inear  ordinary 

The functions y f ( t )  
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entering the coefficients a r e  known. 
identifies a given vector function y~ ( t ) ,  and the superscr ipt  i specifies the 
par t icular  component of this  vector function. 
(2.97) a r e  defined by a sys tem of N l inear  algebraic equations in N unknown 
functions l p ( f i ) .  The problem of solving (2.97) for  the derivatives is 
equivalent to  the problem of interpolation of the function - Z(f, 9, vu). defined 
by i t s  values on the supporting curves using the polynomial (2.96). 
ly, the problem of solving (2.97) is equivalent t o  the interpolation of the 
function [-F(yl, t l ) ]  defined by i t s  values at the points g i  ( t )  using the 
polynomial (2.96). 

shown, they a r e  reduced to  the solution of a series of one-dimensional 
interpolation problems using polynomials of degree 11 ' 1 2 ,  . . . , I ,  or, in  other 
words, t o  the solution of a system of l inear  algebraic equations of o rde r  
11, 12, . . . , I, with non-degenerate mat r ices  (Vandermonde matr ices) .  

The solution of (2.97) with the appropriate boundary conditions yields 
the functions i l i p ( f ) ,  which define q( t ,  y) and hence the approximate control 
synthesis E ( t ,  g) . The synthesis Z(f ,  g) obtained in this way evidently 
sat isf ies  the estimate (2.94). 

In particular problems, to  evaluate the est imate  (2.95), it i s  often 
convenient to  supplement the integration of ( 2 . 9 7 )  for ( t o ,  [ I )  by a simul- 
taneous solution of the equation 

We reca l l  that the subscript p 

The initial conditions for 

Similar- 

Our algorithm is built to  cope with these problems, since, a s  can be 

with the following initial condition for f = f ,  : 
I 

i ( i l )= sup D - i i i f  &. 
. V W o 1 ~ , )  YtV,(,,l 

Evidently, 

A = (f"). 

(2 .1  00) 

In the majority of publications on many-dimensional interpolation, the 
interpolation polynomial is given explicitly o r  implicitly in the form (2.96) ,  
and the reference points a r e  arranged a s  described above. In / l o / ,  the 
interpolation problem i s  solved in general  form and general  expressions 
for the polynomial coefficients a r e  given. These expressions, however, 
a r e  very unwieldy and i t  i s  not c lear  to  what extent they w i l l  be useful in 
pract ical  numerical work on computers and how favorably they will compare 
with information given in the original implicit form by equations (2 .97 ) .  
In numerical  solution of (2.97) ,  the derivatives should be determined at 
every s tep  f rom explicit and implicit expressions. 
should be sufficiently large. The example that follows shows that a slight 
modification of the original equations may enable u s  to  choose the reference 
curves so  that the elements of the coefficient matr ix  of (2.97) a r e  e i ther  
constants or  simple functions of time; the elements of the corresponding 
inverse matr ix  can be determined beforehand, in the form of constants o r  
simple functions of time. In this  case, the determination of the derivatives 
a t  each s tep  involves computations using fairly simple formulae. Since 
the mat r ix  inversion is performed only once and thus hardly affects the 
total computer time, the exact fo rm in which the original information about 
the function $ ( t )  is specified is of no par t icular  consequence. 

The number of s teps  
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Let us  summarize.  We described an-algorithm for  the approximate 
construction of an optimal control field 
c loseness  of the approximate synthesis i, (f, y) to the optima1 synthesis is 
given by expression (2.94). 

(t ,  y). An est imate  of the 

The algorithm comprises  the following stages. 
1. a reference curves Yp ( t )  a r e  defined, i. e., a points in a region 

2. The Cauchy problem is solved for  sys tem (2.97) of ordinary 
V,(tl)  of the space Y for  every fixed tE[to,  i l l .  

differential equations with initial conditions (2.98). 
solved numerically in the direction f rom tI to  to". 
right-hand s ides  of (2.97),  we determine the synthesizing function & (t ,  y) 
f rom (2.82). 

applied to  determine the closeness  of the synthesis zm ( t ,  y) to  the optimal 
synthesis. If the result is insufficiently close, a l a rge r  a is selected and 
the procedure is rei terated.  

Construct the optimal synthesis for  the sys tem g = u  in 
the region t<tl of the t, y plane f rom the condition of minimum of the 
functional 

System (2.97) should be 
While construzting the 

3. The number Aa is computed f rom (2.95) and inequality (2.86) is then 

E x a m p l e  1. 

(2.101) 

Because of the increment kY?,  the functional fa l ls  in a sufficiently smal l  
neighborhood of y(f1) = O  for  sufficiently la rge  h .  We have 

The function F(y)  =1y2 is a quadratic polynomial, and the least  number 
a fo r  which (2.98) may be satisfied is therefore  a=2. Let us  now construct 

an approximate synthesis uz(t,  Y). We have 

The curves  y=yp ( t )  (p=1, 2) a r e  chosen a s  the s t ra ight  l ines  

yI=o; g 2 , 3 E + 1 .  

1. System (2.97) has  the fo rm 

(2.102) 
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The boundary conditions (2.98) have the form 

$ l ( t l )  =o; qz(t1) =-A. 

The solution of system (2.102), (2.103) is 

(2.103) 

Further ,  
d 2 
8Y 

--'Pz(t,y)= - -.L . 
tl + l / h -  t ' 

uz( t ,y )=  - - y-. (2.1 04) t ]  +- 1/A - f 

Check the closeness of u z ( f ,  q )  to  the optimal synthesis: 

i. e. ,  the second approximation coincides with the exact solution. 
E x  a m p  1 e 2. Construct a synthesis for the system 

y=u J u j - s l  (2.106) 

in the region O S 1  g0.5. l Y l <  1 of the ( t ,  y) plane which w i l l  be optimal in 
t e r m s  of ensuring minimum deviation f rom zero  of the coordinate y in the 
measure 

We have 

(2.1 0 7 )  

(2.1 08) 

Let ga ( t )  = & 1, p = l ,  2. 
System (2.97) is written in the form 

2$ E O ,  
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and the initial condition (2.98) takes  the form ~ $ ( t l )  = O .  We have 

q J ( t ) = O ;  P1(t,y)= -gz; 

A~ = J 1 sup P, (y)- inf ~ ( y ) l  dt = (2.109) 
0 j. 
0.5 

dt=0.5. 

Any control function E ( t ,  g )  is possible by (2.108). The first approxi- 
mation in this  case  thus does not produce a synthesis. 
this  case  indicates that for any admissible control function, the deviation 
of the functional f rom its minimum value does not exceed 0.5. 
Second approximation: 

Est imate  (2.109) in 

System (2 .97 )  takes  the form 

(2 .1  1 0 )  

Initial conditions (2.98) take the form 

qJI( t1)  =o; + 2 ( 4 ) = 0 .  

This sys tem has the solution 

q1 ( t )  0; ( t )  = 1 /2 [ e2(-I --I I ) - 1 1. 

Fur thermore  

u2(f,y)=sign2qJz(f)g= --sign y. 

It is readily seen that the synthesis up( t ,  g )  coincides with the optimal 
synthesis. Let us  check est imate  (2.94). Using the above relations, we 
find 
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Despite the fact that n z ( f ,  y) is a s t r ic t ly  optimal synthesis, the estimate 
is not zero, unlike that in  Example 1: the a pr ior i  estimate in  this  example 
is thus too high. 
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Chapter III 

DEGENERATE PROBLEMS.  SLIDING CONTROL 

In Chapter I1 we assumed that an absolute minimizing solution ( y ( t ) ,  ii(t)) 
of the  functional (1.1) existed in the c l a s s  D of the admissible pa i r s  of vector- 
functions g ( t ) ,  u ( t ) .  
valid for numerous important problems. 
absolute minimizing solutions. 
(gs( t ) ,  u s ( t )  } C D , however, such that 

This assumption is not universally true, although it is 
The c lass  D may contain no 

There always exis ts  a sequence 

( a  minimizing sequence). 

(1.1) is minimized by finding a minimizing sequence. 
sequence has been found, we can approximate a s  close a s  desired to  the 
optimal control, always remaining in the c lass  of admissible functions. 

If a minimizing solution ( y ( t ) ,  C ( t ) )  ED does not exist,, the functional 
Once a minimizing 

A construction of a minimizing sequence for  the classical  object of 

variational calculus - the functional 

( s e e  also Supplement). The main feature of this construction is that the 
sequence of paths gs( t )  in the phase space goes to  some function y(f)(the 
ze ro  closeness  function), whereas the sequence of control functions u s ( f )  
has  no limit, going to  infinitely frequent switching between severa l  (two 
for  a plane problem) fixed control functions up ( I ) .  These terminal  
functions y ( I )  and Zp ( t ) ,  p=1, 2 ,  fully descr ibe a minimizing sequence. 
Sequences of this  kind define what is known in automation theory as 
s 1 i d  i n g c o n t r o 1 .  Technical examples of a minimizing sequence a r e  
provided by the "intermittent thrust control" of an aircraf t  ensuring 
maximum range with the engine being switched on and off with the highest 
possible frequency ( see  Supplement) of the optimal pulsating punching schedule 
with the p re s s  operating at the highest possible frequency / 7  f .  

In this  chapter we will descr ibe some methods of solution of variational 
problems for  the case when no minimizing solution exis ts  in the c lass  of 
admissible paths, and investigate the propert ies  of minimizing sequences. 
In t e r m s  of the corresponding algorithm, these problems a r e  part of a wider 
c l a s s  of so-called degenerate variational problems, whose solution involves 
a number of specific difficulties. In particular, the methods of the previous 
chapter are ineffective for  the solution of degenerate problems even if the 
minimizing solution is contained among the admissible pa i r s  y ( t ) ,  u ( t )  . 
The theory developed in this  chapter is in fact the theory of degenerate 
variational problems. 

f o ( t ,  g, g')dt - is described in /4 -  6 /  s 
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I 

Let u s  f i rs t  consider a particular case of the variational problem 
advanced in § 1 .l, which i l lustrates  the specific difficulties encountered 
in the solution of degenerate problems. 

§ 3.1. A PARTICULAR PROBLEM 

Let f i ,  1=0,1, .  . . , n be functions of the one variable u , let  V,(t) coincide 

& = O ;  t l=tlf;  y(0) =O ; 
with the entire space Y for any t E (to, t l ) ,  and let v, be a closed region 
independent of t and y . The end points a r e  fixed, 

TO solve the problem, we make use of Theorem 1.1. 
Y ( f l )  = Y l f .  

We have 

If we take q( t ,  y)=$y, where $=const,  the function 

R= R(u)= qi.P (u)  - fO(u) (3.2) 

is independent of y and the sufficient condition of an absolute minimum of 
the functional on the pair (ij(f), U ( f ) )  D takes the form 

(3.3) 

Let R ( u )  have a single supremum point U for any 111. This point is 

The vector $= const 
clearly independent of t . Then, by Theorem 1.1, the pair y ( t ) = f ( U ) t ,  E($) 
is an absolute minimizing solution of the functional. 
is defined by the condition that the straight line (f, ij(t)) passes  through 
given points ( 0 ,  0)  and (tlf, ylf) of the ( t, y )  space. For simplicity, a 
three-dimensional space is assumed, i. e., n=2. If the position of the 
terminal  point ( t lf ,  y l f )  is altered: the vector $, the optimal control 
function E ,  and the direction of ij of the straight line y ( t )  all  change. 

Now suppose that there  exists a vector $ = ( $ I ,  $2) such that R ( u )  has at 
least  n + l = 3  suprema U I ,  u2, u3 where 

(3.4) 

Inserting the control functions uI,  u2, u3 in the equation y = f ( u )  , we obtain 
th ree  l inearly independent directions in the three-dimensional space 
( t ,  gl, yz), which may be defined by the vectors  

ag=Il, f'(up), f 2 ( u s ) l ,  B = 1 ,  2, 3. (3.5) 

Any vector in the ( t, y ) space, including the vector a ( t , f ,  y;f, yyf), may 
be represented a s  a l inear combination of the vectors up : 

a=yPap, p=1, 2, 3, 

where y', y2, y3 a r e  some numbers. 
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In other words, the origin may be joined to  any point (ti,  gi, y: ) by a 
polygonal line consisting of straight segments parallel  to the vectors  up . 
This polygonal line belongs to  the class  of admissible paths if and only i f  
the coefficients $, y2, y3 (the projections of the vector a onto ap ) a r e  
non-negative: 

y p 2 0 ,  p=1, 2, 3. ( 3 .  sa)  

Condition ( 3 . 5 )  has an obvious geometrical  interpretation: the terminal  
point (tlf, g:f, g:f) can be joined to  the initial point ( 0 ,  0, 0) by a polygonal line 
consisting of segments parallel  to  al, a2, us. which belongs to  the class  of 

admissible paths only if  th is  point l i es  inside 
the t r ihedral  solid angle (cone) o with its apex 
at the origin, spanned by the vectors ul, u2, u3 
(Figure 3 . 1 ) .  The situation is entirely 
s imilar  in the n-dimensional problem. 

minimizing solution. 

taking on the values ul, up, u 3 .  Indeed, any 
such pair y(f) ,  E( t )  belongs to  the c lass  D of 
admissible solutions and satisfies a l l  the 
conditions of Theorem 1.1. 
there  a r e  obviously infinitely many such 
minimizing solutions. 
select  a minimizing solution consisting of the 

Each of these polygonal l ines is an absolute 
It corresponds to a 

- piecewise-constant control function E ( t )  

Y: 

&it,; 
Y’ 0’ 

It (tl, g1) E o , 
FIGURE 3.1 

We can thus always 

least  number of straight segments (and the least  number of controls).  
If the point (tlf,  glf) l ies  inside the angle o, this number is n + l = 3 ;  if  it 
l i es  on one of the faces of the t r ihedral  angle, 
on one of the edges, 

Thus, the minimizing solutions of the functional a r e  of fundamentally 
different form, dependeing on the properties of the function R ( u ) .  
i f  R ( u )  has a single supremum point E over u c  V u ,  the minimizing solution 
( f j ( t ) ,  E ( t ) )  E D  is unique. 
a very simple boundary-value problem: find a vector $= ($I, $12) such that 
the straight line y=f[E($)]t passes  through the point ( f l f ,  g:f, Y ; ~ ) .  
a vector $ exis ts  such thzt R ( u )  has three supremum points up , satisfying 
the condition ( t l f ,  glf)  Eo, the functional has infinitely many minimizing 
solutions, which a r e  polygonal lines. To find the constants $1, $12 and the 
control functions u p ,  we do not have to  solve any boundary value problems: 
they a r e  independent of the terminal  point ( f l f .  glf) 
f rom the finite relation ( 3 . 3 ) .  

conditions of a local maximum, e. g., 
Vu, and two necessary conditions of an absolute maximum a t  each of the 

points up : 

n = 2 ,  and finally i f  it  l i es  
n= 1. 

Indeed, 

To find this minimizing solution, we have to  solve 

If, however, 

w and a r e  determined 

Condition (3 .3)  in our case  contains five equations: three necessary 
R,(up) =O, p=1,  2, 3, if  up lie inside 

R(ui)  = R ( u p ) ,  p=2,3.  ( 3 . 6 )  

The other conditions included in ( 3 . 3 )  a r e  inequalities. The number k 
of finite equations (3.6) defining the vector $ will be called the 
d e g e n e r a c y of the variational problem. The degeneracy k can be 
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defined as  the number of l inearly independent vectors up (the dimension of 
the solid angle o) minus one. 
o rde r )  to  k=O and k = n = 2 .  

R ( u )  has onlytwo suprema, U I  and up, such that the vector u= (t,f ,  y;?, y:f) may 
be wri t tenintheform u=yPap, where up =[1, f l (up  ), f2(up )], yp >O, p = 1 ,  2 .  In 
this case,  o is aplane angle spanned by ul and ~ 2 .  The functionalhas infinitely 
many minimizing solutions, and the corresponding paths in the ( t ,  y) space a r e  
polygonal l ines consisting of straight segments parallel  to  u l  and ap. 
contrast  to  the case k = 2 ,  the constants $ I ,  q12 and up depend on the position 
of the terminal  point ( tlf, gif, ylf ), although they a r e  " less  sensitive" to this 
factor than for k = O .  For k = O ,  two boundary conditions had to be satisfied, 

The above cases  correspond ( in  the same 

An intermediate case, k = l ,  is also possible. Here, for some $= ($1, $ 2 )  

In 

and for k =  1 only one condition is to be satisfied: the vectors u1,u2 and 
u=(flf,y:f,gyf) should be coplanar. 

§ 3 . 2 .  SUFFICIENT CONDITIONS OF AN ABSOLUTE 
MINIMUM AND THE CONSTRUCTION O F  A 
MINIMIZING SEQUENCE 

Let u s  re turn to  the general  variational problem assuming a fixed tl . 
The sufficient condition of an absolute minimum for this problem i s  for- 
mulated by Theorem 1 . 1 .  

which satisfy all the conditions of the theorem. 
of this sequence depending on the form of the function R ( y ,  u, t ) .  
( i j ( t ) ,  U ( t ) )  be the point of the (n+r)-dimensional space ( g ,  u )  where R ( t ,  y, u )  
attains i t s  maximum for a given t . 

Let further 
g(t),be a bounded, continuous, and piecewise-differentiable function and 
U ( t )  a bounded and piecewise-continuous function. Then, by ( l . l l ) ,  
everywhere on this segment 

Consider a minimizing sequence { y s ( t ) ,  u s ( t )  } C D and a function rp(t, y) 
Let us  analyze the s t ructure  

Let 

Let there  be one such point on some segment ( T I ,  T z ) ~  ( t o ,  f~). 

ys (f) + y(f), and us ( t )  +TL ( t ) .  (3 :7 )  

Since ( y s ( t ) ,  u s ( f )  } ( D ,  a necessary condition for the convergence ( 3 . 7 )  
= f ( t ,  ij, U )  almost everywhere on (tl. z2) . is that 

where the function R ( t ,  g, u )  has a single supremum point ( i j ,  E ) ,  the 
minimizing sequence converges t o  ( y ( t ) ,  i i ( t ) ) ,  and this pair  of vector 
functions should satisfy equations (1 .3 ) .  

control functions up such that R ( t ,  y, u )  has a supremum at every point 
(7, ug) of the space (g, u )  ( f j  is the same for a l l  the suprema),  i. e., 

Thus, for those points 

Now suppose that on the segment (TI ,  TZ) ( ( to ,  t l )  there  a r e  m different 

R It, i(4, 4 ( 4 l = P ( t ) .  P=1,2 ,..., m, ( 3 . 8 )  
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and let t he re  be k + l < m  control functions up, p=1, 2, ..., k + 1 ,  such that 
the vectors  ap =[I, f ( t ,  Y, uQ )] of the ( t ,  y) space a r e  l inearly independent. 
Then, by (l.ll), J s ( t )  -g(f). whereas the control function u s ( f )  does not 
necessarily have a limit. It is sufficient if this control function "oscillates" 
between up ( t ) .  The la t te r  signifies that for any E>O and a sufficiently large 
terminal  S, one of the inequalities 

[us(t)-ug ( t )  I < E ,  p= 1, 2, . . . , m ,  (3.9) 

should be satisfied everywhere on (z,, zp), with the exception of a set  of points 
whose measure  goes t o  zero for S-m. 

for any u ( t ) .  It is necessary,  however, that on (ZI, 2 2 )  the vector a ( t )  = ( 1 , i )  
of the space ( f, y )  belongs to  the angle w[ t ,  i j ( f ) ] ,  which is a convex envelope 
of the vectors  

The l imit  function Y ( t )  in this case is not necessarily a solution of (1.3) 

a s = [ l , f ' ( t , ~ u s ) , f * ( t , y ,  UP) ,..., f"(t, i ius)l ,  
p=1, 2 ,..., k t 1 .  

In other words, it is necessary that there exist some functions yP ( f ) ,  
b =  1, 2, . . . , k +  1, such that on ( t i ,  T'Z) the vector ( I ,  ij) is representable in 
the form 

- 
a ( t )  = ( I ,y )=yP .a$;  yp ( t )> 0, (3.10) 

or 

k+l 

B 
y r y"1; y p > / o ,  p=1, 2 ,..., k f l  

(3.11) 

(3.12) 

(summation over is implied). The functions y Q  ( f )  a r e  piecewise-continuous. 
A s  a result ,  

The higher the dimension k S 1  of the angle w. the weaker the "coupling" 
imposed by ( 1 . 3 )  on the vector function y ( t ) .  
(1, Y) E w imposes simple inequality constraints on i ( t ) ,  instead of equations 
(1 .3) .  For k = O ,  conversely, Y ( t )  should be the solution of the equation 

i j ( f )  is piecewise-differentiable. 

For k = n ,  the condition 

where up is any of the maxima of the function R for a fixed y = y ( t ) .  

a sequence ( y s ( t ) ,  u s ( t ) )  ( D satisfying (1.3) and (1.11) on (TI, z2). 
we will actually construct this sequence. 
into S intervals by the points T I  =t6<t1<.  . . <tS <zp. 
expected to  satisfy one condition only: for S-oc , 

We w i l l  now show that i f  (1 ,  :)e o on (Ti, zz), we may indeed construct 

We partition the segment (TI,  7 2 )  

Moreover, 

This partition is 

A ~ =  maxItT+l-tfr(-+O, y=O,1,2, ..., S-1. 
for s-op 



Let  

Every point ( t y ,  ys(tT)) in the ( t ,  y )  space is joined with the adjacent 
point ( f T + l ,  ys(fTc1) ) by a polygonal line consisting of straight segments 
paral le l  t o  the vectors  

(3 .13 )  

The polygonal line ys ( t )  constructed in  this  way is a solution, to  t e r m s  
of the o rde r  O ( A s ) ,  of equation ( 1 . 3 )  with a piecewise-constant control 
function u s ( t ) ,  which is equal to  up(t7) over  the par t  yp( fY)A,  of each 
interval Ar'tY+'-f,. If ( 1 . 3 )  is to  be exactly satisfied, the straight segments  
paral le l  t o  the vectors  aP(t7) should be replaced by the solutions of the 
equations 

The sequence ( y . ~ ( t ) ,  u s ( t )  } constructed in this  way sat isf ies  all the 
conditions of the theorem on (TI, tz): it satisfies equations ( 1 . 3 )  and for  any 
t t (TI, Z d ,  

R ( f ,  YS? 4) + P(4,  
S-.. 

where 

is bounded and continuous almost everywhere on (tl, ZZ) in virtue of the 
propert ies  of the functions R, i j ( f ) ,  u p ( t ) .  Thus, i f  th is  sequence sat isf ies  
the conditions of the theorem on [to,  tl] , i. e., beyond the l imits  of the 
interval (TI, t2) , it is a minimizing sequence. 

The minimizing sequence constructed by this  method has much in 
common with the sliding control functions of re lay sys tems in automatic 
control theory, which switch f rom one s ta te  to  another. 
i t  will be re fer red  to  a s  the o p t i m a l  s l i d i n g  c o n t r o l .  

the ze ro  closeness  function of the sliding control. 
control may be treated as "sliding mot'ion" along the path @(t)  with infinitely 
frequent switching between different control functions up ( t )  . 

The control switching may occur in any order ,  a s  long a s  the 
approximating path y s ( t )  remains in a sufficiently smal l  neighborhood of 
the path i j ( t ) .  

The optimal sliding control is fully defined by the zero closeness  
function act) and a set of k + l  basis  control functions up(f) ,  p=1, 2, .. ., k + l .  
To find th i s  control, we have to  find i t s  defining character is t ics .  

A, = ( L Y ,  t,+') E (TI, 22) will be called the b r a n  c h i  n g of the optimal 
control on (TI, Tz). 

For this reason, 

The limit function y(t)  of a sequence of optimal paths y s ( t )  will be called 
In the limit, the sliding 

The leas t  number 1 of switchings of u s ( f )  on every small interval 

Branching can be defined as the least number of 
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st raight  segments which make up an elementary polygonal line i n  the (t, y) 
space minus one. We have an obvious inequality l < k .  

with the total  number m of the suprema ( i j ,  up) of R(t ,  y, u ) ,  but with the 
number k+1< m of the basis  control functions up such that 

Note that in our  construction of the minimizing sequence, we dealt not 

R( t ,  5, ~p)=p( t ) ,  @ = I ,  2, ..., k + l ,  (3.14) 

and the vec tors  up [ I ,  / ( u p ) ]  in the (t,  y) space are linearly independent. 
Condition (3.14) is equivalent on (TI, ~ 2 )  t o  condition (1.11) i f  the sequence 
ly,(t), us(f)] is constructed by the above method. 

The number k is called the degeneracy of the solution of the variational 
problem on (TI, ~ 2 ) .  This  number, as we have noted before, character izes  
t o  what extent the zero  closeness function is "independent" of the constraints 
(1.3). The control functions up ( f )  defining the basis vectors  ap, p = I ,  2, . . .  , 
k-1-1, which span the angle o(t)  will be called the basis  functions of the 
optimal sliding control. 

Let 

NIf, Y(f), (1,(0 u l = + ( f ) f [ f ,  Y ( 4 ,  al-fO(f, Y, a), 

or 

Since the vectors  ag a r e  linearly independent, the matr ix  

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

is of rank k + I .  
before pl, Q in (3.18). 

finite equations (3.18) t o  be satisfied by the vector $ ( t )  and the function 
pl(t) .  

with branching l = k ,  a ze ro  closeness function i j ( t ) ,  and basis  control 
functions up ( t ) ,  f3= 1, 2, . . . , k +  1,  is optimal on this  interval. 

This mat r ix  coincides with the mat r ix  of the coefficients 

A degeneracy of k thus corresponds to  the existence of k independent 

If on (Ti ,  ZZ) the solution has  a degeneracy k ,  then a sliding control 
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Is this  sliding control unique or do there  exist other optimal sliding 
controls with the same zero closeness function but a smaller  branching on 
(Ti, T2) ? A sufficient condition for the existence of such controls is the 
existence of an angle ol[f,y(t)]of dimension k l + l < k +  1 .  
the zero closeness function act) to be par t  of the phase path of an absolute 
minimizing solution, it is sufficient that there  exists a control function 
~ ( t )  E V ,  which, first, satisfies the equation y = f ( t ,  ij, i)) on (TI. 5 2 )  (the 
angle 01 in this case k l = O  degenerates into the vector (1 ,  f) and, second, 
sat isf ies  the condition 

( 3 . 2 0 )  

In particular, for 

W ,  y( t ) ,  7p( t ) ,  7JI=HV, J ( t ) ,  * ( t ) ?  up ( t ) l=P l ( t ) .  

For example, in problems which a r e  l inear in control functions, 

f'= Ai  (f,y)+ Bj(t ,y) d, i=0,1,2 ,... n, 

j = 1,2,. ..r, 

such a solution always exists, and a minimizing solution ( y ( t ) ,  li(t))c D 
therefore also always exists, although along a so-called singular curve 
i j( t)  satisfying the equalities 

the degeneracy is k = q .  Indeed, by (3.21), the function 

( 3 . 2 1 )  

(3 .22 )  

i=1,2 ,..., n, 

i = q +  l , , . . r  

is independent of the control functions uj , j = l ,  2, ..., q .  

components a r e  arbi t rary and the las t  components maximize (3 .22 ) ,  satisfies 
(3 .20) .  
( 1 . 3 )  also sat isf ies  (3 .20 ) .  

exis ts  in the class  of admissible solutions D i f  the branching 1 is zero. 
on some (TI, Tz), I>O, no minimizing solution exists in D, and a minimizing 
sequence has to  be constructed a s  described above. 
variational problem will be called an optimal control with branching on 
(TI,  Q), o r  an optimal sliding control on (TI, z2), or simply optimal control 
if  there  is no danger of confusion. 

Theorem 1 . 1  reduces the problem of minimizing a functional on a 
set D to  the problem of finding a maximum of the function R ( t ,  y, u )  for 
every fixed f . 
defined by the zero closeness function i j ( t )  and the basis  control functions 

Therefore, any control function ~ ( t )  = Cui, . . . , u' } , where the f i rs t  

In particular,  a control function with first q components satisfying 

Irrespective of the degeneracy k ,  the minimizing solution (ij(t), E ( t ) )  
If 

This solution of the 

Our unknowns in this problem a r e  the minimizing sequence, 
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up , and the function q ( f ,  y) .  
an unambiguous choice of the function rp(h y) . 
as in Chapter 11, we may select  different algorithms based on Theorem 1.1 
for the solution of the variational problem. 

The conditions of the theorem do not prescr ibe 
Making use of this ambiguity, 

I 3 . 3 .  GENERALIZATION O F  THE 
LAGRANGE-PONTRYAGIN METHOD 

For simplicity, we assume that Y ( t )  l i es  inside vu for  all tc (to, t l ) ,  
the vectors yo=y ( to ) ,  y ~ = g ( t l )  are given, the region Vu is defined by the 
inequalities 

J u j J G l ,  j = l ,  2 ( . . . )  f ,  

and the functions f i  ( t ,  y, u ) ,  i=O, 1, . . . ,  n ,  a r e  continuous and twice 
differentiable. 

satisfies all the conditions of Theorem 1.1, i. e., equality (1.11) in our case.  
On (ti, t2) C ( t o ,  t i ) ,  this optimal control has  a degeneracy k .  
write out all the equations which are contained in ( 3 . 1 4 )  and which should 
be satisfied by the sought functions on (TI, r 2 ) .  

assumed t o  be twice differentiable in the process.  

for a local maximum of H: 
either 

Consider an optimal control with a ze ro  closeness function y ( t )  which 

We will 

The function q(t ,  y) is 

1. Condition ( 3 . 1 7 )  containing k equations (3 .18 )  and r ( k + l )  conditions 

or  

where 

u;= f 1, 

( 3 . 2 3 )  

(3 .24)  

B=1,2 ,..., k + 1 ;  ~ = I , z  ,..., r 

2. The necessary conditions for a maximum of R with respect to  y : 

R,I ( G u d = ( P y y l f  (f>Y,uP)+?tyi +?YfU, ( 4 Y A ) -  f ;I ( t , Y J d  lg-zt)=0l 

or  
d - 

R,i(I,Y,ne)=-((P~i)+H,i(t,~y,Y,ue) d t  I Y = Y ( l )  =o* ( 3 . 2 5 )  

The index j3 i n  the f i r s t  t e r m  in ( 3 . 2 5 )  signifies that the total derivative 
of 'pyi (f, g) is taken in virtue of the equation y=f(t, y. up ). 
of equations in ( 3 . 2 5 )  is ( k + l ) n .  

The total number 

Using (3.11), we may write 
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For every fixed i, we multiply each of the k + 1  equalities in (3.25) by 
yp and add them up. Using the las t  identity, we obtain 

(3.26) 

Let u s  write the necessary conditions for  a maximum of R ( t ,  y, u )  on 
(TI, t2) supplementing them with conditions (3.11), (3.12) which signify that 

the sought minimizing sequence belongs t o  the set  of sliding controls on 
(TI, t2): 

b l l  

(3.27) 

Here H is defined by (3.1 5) and (3.16). 

principle for  a minimizing solution of c l a s s  D. 
( k = O ) ,  equations (3.27) coincide with (1.3), (2.4), and (2.5) of the maximum 
principle. 

include n phase coordinates y ’ ( t ) ,  n functions $ > ( f ) ,  r ( k +  1 )  components 
of basis  control functions u ? ,  and k + l  factors  yP ( t ) .  The number of 
equations is also ? n + r + h + k .  r+ 1 .  Indeed, we have 2n equations f rom 
(3.11) and (3.26), one equation f rom (3.12), and k + r + r . k  equations f rom 
(3.17). 

unknowns. 

This  sys tem is an analog of the equations of Pontryagin’s maximum 
In case  of zero degeneracy 

Equations (3.27) contain 2 n + r + k + k < r + l  unknown functions: these 

The number of equations in (3.27) is thus equal to  the number of 

Equations (3.27) include k independent finite relations 

H ( t 7 i h > 4 3  (t,S,Ji,>-H (f,y,g,u,(f,y,,~))=O’ (3.28) 

p=2,3 ,..., k 4- 1, 

which follow f rom (3.17). 
H ( f ,  q, $, u )  for  fixed t ,  q, Q has equal values a t  a l l  the suprema u .  
i t  follows that the initial conditions ( t ,  y, Q )  for  the 2n differential equations 
contained in  (3.27) cannot be chosen arbi t rar i ly:  they must  satisfy (3.28), 
and so the o rde r  of the system (3.27) is at most 2n-k . 

Conditions (3.28) should be satisfied identically along any solution of 
(3.11), (3.26) on (TI, tz). Setting the total derivatives of (3.28) with respect  
t o  f equal t o  zero  and insering for  4 and y the right-hand s ides  f rom (3.11) 
and (3.26), we obtain the following sys tem of l inear  equations in y p :  

These relations indicate that the function 
Hence 
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(3 .29)  

~ = 2 , 3  ,..., k f  I; (3=1,2 ,..., kf 1. 

Here 

f J ty = f ( U a ) - f ( u i ) ,  f ( U a ) = f ( t , y , u a )  3 

The left-hand s ides  contain scalar  products of the n -dimensional etc. 
vectors f and H , = ( H , x ,  Hu2, . . . ,  Hun). 

coefficients Y P .  However, these equations may prove to be compatible only 
f o r  those f ,  y, J, which satisfy certain finite relations. 
lower the o rde r  of sys tem ( 3 . 2 7 )  even further. 

If equations (3 .29) ,  ( 3 . 1 2 )  a r e  compatible for any f ,  y, I), they define the 

This will evidently 

Let & = I .  Then (3 .28) ,  (3 .29) ,  and ( 3 . 1 2 )  take the form 

H (4Y ,kuz ) -  H(f,g,4J,uJ= 0; ( 3 . 3 0 )  

y ' t y 2 = I .  

Collecting s imilar  t e r m s  in (3 .31) ,  we obtain 

(3 .32)  

( Y ' t  r2)[HL/(~z)f(~~)--Hy(ul)f(~Z)l= --H, (Uz) t Hf (uA 

whence, using (3 .12) ,  we obtain an additional finite relation supplementing 
( 3 . 3 0 )  

[ H Y  ( ~ p ) f ( ~ l ) + H 1 ( ~ Z ) l - [ H y ( ~ i ) f ( ~ z )  t Hf (u1)1=0, 

so that sys tem ( 3 . 2 7 )  in this case i s  at most of order  2n-2. 

method i s  not very clear  at this stage. In principle, however, it can be 
described a s  follows. 

of the function 

The general  procedure for the construction of a solution by Lagrange's 

Choose an arbi t rary initial vector lag rang to) and investigate the maxima 

HPO, yo, P, u).  

Suppose that H ( f 0 ,  yo, I#O, u )  has a single absolute maximum u1 . This 
means that for the particular $O chosen, the degeneracy is zero at the 
corresponding point, k=O, and equations (3 .27)  coincide with the ordinary 
equations of Pontryagin' s maximum principle. Using these equations, we 
construct (numerically, s tep by step) the functions i j ( f ) ,  $ ( t ) ,  t i , ( f ) .  If for  
some t = i I  the function H [ f ,  jj. $ ( t ) ,  u ]  is found to  have several  absolute 
maxima (basis  control functions) u l ( t ) ,  . . . , u m ( f ) ,  m> 1 , and sys tem ( 3 . 2 7 )  
is compatible at this point, the construction of the extrema1 can be continued, 
in general, from this s ta te  in m different directions, 

( f .  d )  = (f, f ( u g ) ) ,  
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I 

taking k = O ,  a s  before, and a sliding control of degeneracy k=m-I can 
be constructed using equations (3 .27) .  
equations ( 3 . 2 7 )  equally well, but these equations only provide the necessary 
conditions for a maximum of R ( t ,  y, U) . 
we must rely on conditions (1 .11) .  

Suppose that the optimal branch on (TI, t l)  is a sliding control of 
degeneracy k=m-I . Equations ( 3 . 2 7 )  together with the initial conditions 
Y = Y ( Z I ) ,  $=$(zL) fully define this control. 

Given ij(zl), $(zl), we find the absolute maximum up of H(z1,  u )  ; f rom 
( 3 . 2 9 )  and ( 3 . 1 2 )  we find the factors .yp.  Inserting these up (TI) and yp (z,) 
in (3 .11)  and (3 .26) ,  we obtain ~ ( T I ) , + ( T I ) ,  and applying any suitable 
numerical method of integration of differential equations, we construct 
step by s tep a solution of (3 .27)  up to  t=tl .  If y ( t l ) # y l f ,  a different q0 is 
selected and the entire process is repeated; alternatively, for  the same $a, 
some zz E[q, t l]  is chosen and, if  possible, one of the above control 
alternatives with degeneracy k<m-I is constructed f rom this point. 

a r e  not unique. 
in Chapter I1 shows ( a  degenerate problem with l inear control). 

yield the necessary information even for  constructing local minimizing 
solutions. With nondegenerate systems, on the other hand, the equations 
of the maximum principle a r e  often solvable or have a finite number of 
solutions, so that in principle the minimizing solution can be found by 
constructing all  the possible extremals and choosing the best alternative. 

F o r  k > 2 ,  equations ( 3 . 2 9 )  a r e  often solvable for y o ,  so that ( 3 . 2 7 )  is 
of order  2n-k,  i. e., the set  of i t s  solutions contains 2n-k constants. 
Further  analysis of the function R ( see  I 3 . 5 )  shows that the necessary 
conditions for a maximum of the second derivative of R a r e  satisfied only 
by those solutions of ( 3 . 2 7 )  ( i f  they exist)  for which the coefficients of ( 3 . 2 9 )  
identically vanish, so  that the right-hand s ides  of this system a r e  all equal. 

+ k  additional finite relations. k ( k -  1 )  This generates ___ 
2 

dependent, the overall  order  of system (3 .27)  does not exceed 

Each of these alternatives satisfies 

To choose the optimal alternative, 

It is constructed a s  follows. 

A characterist ic feature of system ( 3 . 2 7 )  with h>O is that its solutions 
The number of solutions may be infinite, a s  Example 2.2  

It should be s t ressed that in the degenerate case, equations (3 .27)  do not 

If they turn to be in- 

k ( k - 1 )  2n--2k--. 
L 

k ( k -  1) The sys tem of finite relations may contain l e s s  than 2k+ ~ in- 

For example, it can be shown that if the degeneracy is k = n  and the 
integrand is independent of the control function and has a stationary point 
y ( t )  for every t E (to, t l )  , where y ( t )  is a continuous and differentiable 

vector function, sys tem (3 .27)  is of o rde r  zero. 

dependent relations. 2 

I 3 . 4 .  REMARKS CONCERNING THE HAMILTON - 
JACOBI- BELLMAN METHOD 

The Hamilton-Jacobi-Bellman method was considered in Chapter I1 for  
those cases  when the minimum exists in D . Unlike the Lagrange method, 
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where Pontryagin's maximum principle equations are replaced by (3 .27 ) ,  
the Hamilton-Jacobi-Bellman method is extended t o  the case of sliding 
control without any change. 

Indeed, consider the function P ( t ,  y), (2 .65) ,  and choose cp(t, y) so that 

As in Chapter 11, the function cp(t, y) describing the ~ p t i m a l  control field 
P becomes independent of y a i. e., so that equation (2 .66 )  is satisfied. 

is defined by the partial  differential equation ( 2 . 6 6 )  with the boundary 
condition (2 .69 ) .  

control function G ( t ,  y) at every point ( t ,  y)  , but this control is not 
necessarily unique. 
in the course of construction of P[t ,  y, cp(t, y)]  . 
condition (to, yo)f, i t  is sufficient to  integrate system (1.3), closed by 
equation ( 2 . 6 5 ) ,  with th i s  initial condition. If the solution of the problem 
with this initial condition contains a sliding control section in (TI, t z ) ,  the 
required solution is realized automatically. Otherwise we would have ended 
up with a non-optimal solution satisfying the conditions of Theorem 1.1, 
which is impossible. 

control schedule with ve ry  frequent control switching. 
frequency increases  as the integration interval diminishes, and the sought 
minimizing sequence is thus indeed obtained by reducing the integration 
interval. 

W e  would like to s t r e s s  some characterist ic features of the partial  
differential equation ( 2 . 6 6 )  in th i s  case.  

Let the function H ( f ,  y, I$, U )  have the form 

Having found a solution & ( t ,  y)  of this equation, we obtain a n  optimal 

It is defined by equation (2 .65 )  and in practice is obtained 

To obtain an optimal solution corresponding to  some fixed initial 

In numerical  integration, the sliding control section emerges  as a 
The switching 

where u E  [-1, + 11 is a sca la r .  The function P thus takes  the f o r m  

P=K(f ,  Y, vu) + IL(f, Y, (PY) I +(Pt*  

i. e., the left-hand side of the partial  differential equation ( 2 . 6 6 )  is non- 
differentiable. This situation is characterist ic of all degenerate problems. 

I 3 . 5 .  THE METHOD OF MULTIPLE MAXIMA 

Consider another method of solving degenerate variational problems, 
which differs f r o m  the Lagrange and the Hamilton-Jacobi methods. When 
applicable, it  has  a number of distinct advantages which will be considered 
below. This method uses  a particular definition of the function q ( t ,  y) . 
F i r s t  l e t  us  consider a particular problem of minimizing the functional 
(1.1). 
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3. 5. 1. 

Let 

The simplest  functional 

( 3 . 3 3 )  

Here y(f )  and u ( l )  a r e  sca l a r  functions, 

Yo=Yof, Yl'Ylf. 

Let fU>0 for u E [ r I ,  I',] and let  the region V,(t) of the admissible values of 

Additional conditions may also 
y be restr ic ted to  the solutions of the equations ! j=f(t ,  y, r1,2) which pass  

through the given initial and terminal  points. 
be imposed on V,(f). 

supremum at least  for two values of u ,  
At every point f ,  y E  V,(t) we find $=$(f,  y) such that H =  + f - f o  attains a 

H [f,y,rl, ( f , y ) ,  ui (f*Y)I = H [f,!f,rl,,rl, ( f d ) , u ~  (f9y)I = d (fty); ( 3 . 3 4 )  

and the vectors  [ l ,  f(ul)]  and [ l ,  f(uz)J a r e  l inearly independent, i. e., 
f ( 4 )  Z f (u2 ) .  

A s  we have seen before, relations ( 3 . 3 4 )  and ( 3 . 3 5 )  incorporate three 
equations in three unknowns uI,  uz. $ . Let r l < u l < r 2  and u z = r z .  Then 

( 3 . 3 6 )  

Solving the second equation in ( 3 . 3 6 )  for 9 and inserting the result  in the 

The function q(t ,  y) is now defined by the equality 
f i rs t  equation, we obtain an equation for uI.  

(3 .37)  

The integral  in ( 3 . 3 7 )  is indefinite, with fixed f , since an additive 

Thus 
constant in the expression f o r  rp does not affect the solution of the problem. 

(3 .39)  

Maximizing P ( t ,  y) with respect to  y for every fixed tc (to, t l )  , we find a 
solution i j ( f )  of the equation 
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The function i j ( t )  in general  consists of pieces of the boundary of V,(t) 

RY ( t ,Y)  = 0 (3.41) 

and the solutions of the equation 

in V u ( t ) .  

fur ther  satisfy the inequality 
Let i j ( t )  be continuous and piecewise-differentiable on [to,  t] . Let it 

f ( t ,  jj, ud<i-\<f(t ,  y, uz), (3.42) 

which in our  case is equivalent to  the condition (1, f ) E  o(t ,  y ( t ) )  . 
a zero closeness function of an optimal control of degeneracy R =  1 with the 
basis  control functions U I ,  U p .  

Indeed, for every t E ( t o ,  f l ) ,  the function R ( t , y ,  u)define# by (3.38) has an 
absolute maximum at  the points (jj, U I )  and (jj, up) of the plane (y, u )  . 
problem is thus solved. 

The above discussion also reveals  the characterist ic features of this 
algorithm. In a sense, it is "antipodal" t o  the Hamilton-Jacobi-Bellman 
method. Both these methods, in contrast to the Lagrange method, impose 
certain constraints on cp(t, y) which should be satisfied identically in V ,  . 
In Bellman's method the optimal path is selected by choosing a control 
function u=U which ensures  sup R ,  while R is maximized with respect to 

y by an appropriate choice of cp(t, y) . 
a minimizing solution is obtained by choosing the point y=j j  in the phase 
space for every t on which sup R is attained; the maximum with respect to  
u is ensured beforehand by an appropriate choice of cp(t, y) . 

chosen so that at every point (t ,  y) there  exists an angle U I ~  (1,  c)  . 
The specific features of each method automatically define the range of 

problems to which they a r e  best applied: the Hamilton-Jacobi-Bellman 
method is li t t le sensitive (at  least  in principle) to  constraints on the control 
function, while being extremely sensitive to constraints imposed on the 
phase coordinates, the constraints on the vector y included. 
formalism, on the other hand, the constraints on the phase coordinates a re  
of no significance. 

maxima is applicable only to  degenerate problems (although not necessarily to  
branching control). This is a typical method for solving degenerate problems. 

Thus, 
instead of solving a boundary-value problem for a sys tem of differential 
equations, whose solution is fa r  f rom covering all  the possible control 
programs (Lagrange's method), or solving a nonlinear partial  differential 
equation (the Hamilton-Jacobi method), the method of multiple maxima 
reduces the entire problem to elementary relations. 
made possible by the relaxation of the constraints on y(f) ,  u ( t )  a s  a result  
of degeneracy. 
and (1, f ( t ,  jj, U ) )  in the ( t ,  y) space is replaced by the weaker condition that 
the vector (1, jj) should belong to the angle w ( t ,  y ( t ) ) .  

Then j j ( t )  is 

The 

vu 
In the new method, on the other hand, 

Indeed, cp is 

For  the new 

In virtue of the particular construction used, the method of multiple 

The above discussion i l lustrates  the efficiency of the method. 

This simplification is 

The condition of the s t r ic t  equality of the vectors  ( 1 ,  jj) 
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We will now consider the generalization of the method of multiple maxima 
t o  some common multidimensional (n> 1) variational problems. 

3. 5. 2. Systems with l inear  control 

Consider the following par t icular  case  of the general  variational problem 
(Chapter I). The functional I is given by 

1 .  [=I fO(t,y,u)dt+F(y,,y,), 
f .  

the differential equations ( 1 . 3 )  have the f o r m  

(3 .43 )  

where 

u = ( v ,  w), U = ( L " ,  u2, , . . ,  U'-'), 

and w is a sca la r  control function. 
The set l ' , , ( t ,  y)  is defined by the conditions 

U E  Vu( f ,  y ) .  w E Vul(f ,  y);  ( 3 . 4 5 )  

YEV,( t ) ,  t E: [ fa ,  tll, ( 3 . 4 6 )  

where V,(f, g) is a given set of points in the (r-I)-dimensional vector 
space, V ,  is the segment [wl(t, y) .  w 2 ( t ,  y)] .  

are continuous and differentiable for a l l  t E [ t o ,  tI]; y E V ! , ( t ) ,  v E  V,(t, g ) .  

since the standard classical  necessary and sufficient conditions do not 
provide a solution for the local minimum of the functional in this  case. 
Thus, Weie r s t r a s s ' s  and Legendre's strengthened conditions / 3 /  a pr ior i  
do not hold. Jacobi 's  condition is meaningless for  these problems. 

The vector functions g ( t ,  y, u ) = ( g I ,  g2. . . . ,  g" ) and h ( t ,  g ) = ( h ' ,  h2, . . . ,  h" ) 

Problems of this  kind constitute a special  c lass  in variational calculus, 

To solve the problem, we will apply Theorem 1.1. We have 

R( t ,  Y, e!, ul) =qg(g(t .  9, U )  +h(t ,  ~ ) w ) -  f o ( t ,  y, U )  +vt. ( 3 . 4 7 )  

The function cp being arb i t ra ry  to  a degree, we define it so  that for  any 

(P&(t, y) =o. ( 3 . 4 8 )  

admissible t and g ,  

Given this  cp , the function R is independent of w. 
Condition (3 .48 )  is a partial differential equation for the function cp . The 

general  solution of this  equation is an a rb i t r a ry  continuous and differentiable 
function 
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(3.49) 

t l  (t ,  y) = (q', q2, . . . , q"-') is a se t  of the (n-1) independent first integrals 
of the system of differential equations 

(3.50) 

We choose f, y as the new arguments of the function (pi . This gives 

(3.51) 

The problem now reduces to  finding the maximum of R I  for every fixed 
t E  ( t o ,  t l)  on the se t  of points (q, y, V ,  w) in the (n+r+l)-dimensional set, 
which satisfy the conditions (3.45), (3.49) and the condition yEVY(t )  . 
functional (3.43) and the following system of constraints: 

Formally, the h? defined by expression (3.51) is a function of the 

n 

q ' = V ( t , y ) ,  j=1, 2 ,..., n-1, 

(3.52) 

(3.53) 

where q j  are phase coordinates, y', v k a r e  control functions. 

problem (we designate i t  Problem 1 )  can be reduced, actually as well as 
formally, t o  the problem of minimizing the functional (3.43) on the se t  of 
elements ( I ) ( / ) .  y ( t ) ,  u ( f ) ,  ~ ( t ) )  satisfying equations (3.51), (3.52) and con- 
ditions (3.45), (3.46) (we designate it Problem 2). 

following conditions: 

differentiable on [ t o ,  tl] ; 

with the possible exception of a finite number of points, where it may have 
discontinuities of the first kind. 

3. F o r  every tc[to, t l ]  the vector ( q ,  y, V )  belongs to the se t  V , ( t )  of the 
( 2 n f r )  -dimensional space defined by conditions (3.45), (3.48), and (3.46). 

4. The functions q ( t ) ,  y(t),  v ( t )  satisfy equations (3.51). The se t  of all 
control functions ( y ( t ) ,  ~ ( t ) )  is designated D 2 .  
follows. 
(3.43) attains i t s  minimum value on D ,  . F o r  the purposes of Problem 2 it 
is assumed that the sought element (T(f) ,  i ( t ) ,  u ( t ) )  is contained in D ,  . 
All that follows can be generalized without difficulty to  the case when the 
minimum of I is not attained on D, and a minimizing sequence is to  be 
constructed in D , .  

Let u s  consider the simultaneous equations (3.44), (3.52) for (y( f ) ,  ~ ( t ) ,  
w ( f ) )  E D .  Then, by (3.53), t he re  a r e  only n independent equations among 

(3.44), (3.52), and the equations in  (3.52) are independent of one another. 
We will now show that D p z D  . 

W e  will show that in the absence of any constraints on t31, the initial 

Consider a se t  D I  of elements ( q ( t ) ,  y ( f ) ,  u ( t ) ,  zl(t))  satisfying the 

1. 

2.  

The vector function q ( t )  = ( V I ,  q2, . . . , qn-l) is continuous and piecewise- 

The vector function ( y ( f ) ,  ~ ( t ) )  is continuous everywhere on [fo, ill  
q i  a r e  the new phase coordinates. 

Problem 2 is formulated as 
Find an element ( q ( t ) , y ( t ) ,  u ( t ) ) C  D 1  on which the functional 
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Indeed, let D2r by a subset of elements of 0 2  satisfying al l  the conditions 
of D , with the exception of equations (3 .44 ) .  
(3 .52 )  contains fewer independent constraints than sys tem (3 .52 ) .  (3 .44) ,  
which is equivalent t o  system (3 .44) .  Hence, 
Then, in  virtue of the particular s t ructure  of the functional (3 .43) ,  w e  have 
the obvious relations 

Then D 2 ' 1  D , since sys tem 

D is a subset of D2,  D 2 x  D . 

inf / = inf / < in f  /. 
Dt D, D 

(3 .54 )  

Suppose that Problem 2 has been solved, say, by further investigation 
of the function RI and the conditions (1 .12) .  Let ( Q ( t ) ,  B ( t ) .  w " ( t ) )  minimize 
the functional (3 .43 )  on D 2 ,  where G(f)  may be any piecewise-continuous 
function on [to,  tl], since the functional and sys tem (3..52) a r e  independent 
of uv. We will now show that a function G ( t )  exists such that there  is an 
element ( j j ( t ) ,  V ( t ) ,  E ( t ) )  satisfying equations (3 .44 )  which satisfies to  any 
desired accuracy the boundary conditions (3 .46 )  and the constraints (3 .45 ) ,  
(3 .46 )  and approximates* t o  the element (y"( t ) ,  v"(t), Z ( t ) )  E D2. 

Indeed, i f  y"(t) is continuous and piecewise-differentiable, with a finite 
number of points of discontinuity of the derivative, then inserting y"(t) in 
one of the equations in (3 .44 )  (such that the substitution does not give a 
t r ivial  relation of the form O =  0) and solving the resulting equation for w, 
we obtain a function Z ( t )  which. in virtue of the properties of g ( t )  and 
g. h has at most a finite number of discontinuities of the first kind. 

this  case ( a c t ) ,  v"(t), G ( t ) )  E D  and we may take 
In 

G ( t ) ,  E ( t ) ,  G ( t ) ) = ( y " ( t ) ,  v"( t ) ,  Z ( t ) ) .  

If g ( t )  has a finite number of discontinuities of the first kind, we proceed 
a s  follows. Suppose that relations (3 .49 )  a r e  written in the form 

Y = x  ( q 7 w 7  x- (X',X2?...,X"). (3 .55 )  

where x' (q ,  8, t )  a r e  some constraints which a r e  continuous and differen- 
tiable functions of their  arguments, 

We know f rom the theory of ordinary differential equations that such a 
representation indeed exists (see,  e. g., / 2 / ) .  The substitution of variables 
reduces ( 3 . 5 2 )  to  the form 

8 is some sca l a r  variable. 

T i =  V p l , O , W , f ) ,  v=(vl,v* (...( vn--l), (3 .56 )  

where vi  (q, 8, V ,  t )  a r e  some continuous functions of their  arguments, and 
(3 .44 )  is reduced to  the fo rm 

e (3 .57 )  

We say that a continuous vectorfinction x ( t )  approximates on [to. t l ]  with an accuracy E to some 
piecewise-continuous function x ( t )  with a finite number of discontinuities of the first kind if 
I %(f) - x ( t )  I < €  ev_erywhere on [ to,  t l ] .  with the possible exception of the E -neighborhoods of the dis- 
continuity points of x ( t )  . 

- 

73 



The functional ( 3 . 4 3 )  and the other relations figuring in the problem are 
also expressed in the new variables. 
element, whereas in  ( 3 . 5 6 )  i t  is a phase coordinate. 
function O ( t )  corresponding to  the solution of Problem 2.  
is some piecewise-continuous function with a finite number of discontinuities 
of the f i r s t  kind (Figure 3.2) .  

In (3 .57) ,  (3 .58) ,  8 gs a control 
Let 8 ( f )  be the conJrol 

In our  case, 8 ( f )  

Evidently, 

We partition the segment [ t o ,  I , ]  into subintervals A, so that the d is -  
continuities coincide with some of the partition points. 
(&, 9 (f,)) by straight segments, we obtain_ a continuous polygonal line 
( f ,  & ( f ) )  "inscribed" inside the curve ( L ,  0 (f)). Here s = l ,  2 , .  . . , S . 
initial conditions q s ( t )  = q ( O )  . 
solution q s ( t ) .  
small  E > O ,  there  ex is t s  6 (for S - m ,  max As-O) such that 

Joining the points 

Let us  find the - solution - G(l)  of ( 3 . 5 6 )  for  O ( f )  = O s ( f ) ,  u ( f )  =v"(l) and the 
First we will investigate the behavior of the 

We see f rom the construction of & ( t )  that for any arb i t ra r i ly  

everywhere on [fo. f l ]  , with th_e possible exception of the E -neighborhoods 
of the discontinuity points of 0 ( f ) .  
construct a closed bounded region G in the space of the variables q, 8, t 
which contains all the admissible values of the variables corresponding to 
the solution of system ( 3 . 5 2 )  with the above initial conditions. Since the 
functions Y J  (q, 8, f )  are continuous, the increment 

Because of the constraints, we can 

( 3 . 5 9 )  

is of the o rde r  E ,  i. e., iSv<ke for 6 0 < ~  , where k is some constant. 
Near the discontinuity points of 6(f), 
60<1, 6v<m where 1, m a r e  constants. 

60 and 6 v  are bounded, i. e., 
Hence we obtain an est imate  for  

6q=l;(f)-G(f) I: 

1 

where rn, n = I ,  2, ..., N, a r e  the discontinuity points of 8 ( f ) .  

FIGURE 3. 2 
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The same est imate  evidently applies to  

a/=lTs-71. 

Hence it follows that-for s z w  (max AS+ o),  li(f)--qs(f)l 

Inserting Os( t ) ,  q s ( t )  in (3 .55 ) ,  we obtain 
f G [ f o , t , ]  (in pa_rticula_r, ' l s ( f l )  + q ( f l ) .  

-> 0 for  a l l  

( 3 . 6 1 )  

The functions x(q, 8, f) being continuous, we obtain 

Js( t1)  --g(fd 
for  S-00. - 

Inserting 
f o r  w ,  we obtain some piecewise-continuous function Z ( t )  with a finite 
number of discontinuities of the f i rs t  kind. 

elements satisfying equations ( 3 . 4 4 )  and, with an accuracy of E , the 
appropriate boundary conditions and constraints; in other words, i t  belongs 
to  the se t  D with an accuracy of E .  

W e  thus a r r ive  at  the following general  scheme for  the solution of the 
problem. The stat-ting system of equations is replaced by equations (3 .52 ) ,  
(3 .53 ) ,  where the phase coordinates a r e  the f i rs t  integrals of ( 3 . 5 0 )  and the 
control functions a r e  g ( l ) ,  a ( f ) .  
integrals, this  sys tem is independent of the control function G ( t ) .  We thus 
define a se t  D2 of the elements ( g ( t ) ,  a ( t ) ) .  We then minimize the functional 
( 3 . 4 3 )  on the se t  D2 ( in  a cer ta in  sense, this  is a s impler  problem, because 
the new sys tem of differential constraints has  a lower order  than the 
original system).  
can be approximated with any desired accuracy by a sequence in D which 
converges to  this  solution and is at the same t ime a minimizing sequence 
of the original problem. 
constrained, Problems 1 and 2 a r e  in fact equivalent. 

equivalent. The above scheme may be applied in this case also: the only 
additional s tep  is to  check that the function E ( f )  sat isf ies  the constraints. 
If it does not, the sought solution will contain sections corresponding to  
the boundary values of w . 
rigorous solution of the problem. 
again proves quite useful: it helps to  form a qualitative idea of what the 
sought solution should be (the discontinuity points of fj(t)  generally co r re s -  
pond to  the boundary control w) and to  obtain a lower-bound est imate  of 
the sought solution (relation (3 .54 ) ) .  
principle (l.ll), (1 .12 )  a r e  naturally valid in the general  case  also. The 
sought minimizing solution in this  case  is probably a combination of seg- 
ments  corresponding to  the inter ior  points of the set v,, (singular sections) 
and segments corresponding to  the boundary of v, . On singular sections, 
the function rp is naturally defined as a solution of the par t ia l  differential 
equation (3 .48 ) ,  and after that we proceed to  investigate the function RI  . 

O s ( f ) ,  G(t) ,  E ( t )  in ( 3 . 5 8 )  and solving the resulting expression 

The sequence ( i s ( / ) ,  E ( / ) ,  ii;s(f)) is a minimizing sequence, each of i t s  

In virtue of the properties of the f i r s t  

The solution obtained in this  way either belongs to  D or 

In our case, when the control function w i s  un- 

In general, when b',,(t, y) is bounded, Problems 1 and 2 a r e  not 

Our scheme is inapplicable in this  case for  a 
However, the solution of Problem 2 

The conditions of the optimum 
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Singular sections a r e  described by equations (3 .52) ,  (3 .53 ) .  On sections 
corresponding to the boundary a, cp should be defined proceeding f rom 
the specific features  of the particular problems being considered (see 3. 5. 4). 

Finally, we obtain equations which describe sections of different types 
and the function cp on these sections. 
procedure is the appropriate matching of the different sections and a final 
verification of conditions (1.1 l), (1.12). 

The las t  s tep in this solution 

3. 5. 3. A degenerate quadratic functional 

The above method will now be applied to minimize the functional 

f ,  

I=J ( a j j ( t ) y ' y j + b j ( t )  t/w)dt 
I" 

( 3 . 6 2 )  

with the constraints 

=M ( t )  g + L ( t )  W ,  

y( t0)  =g(t1) =o, 

Y= (Y', Y2, . ' .  , Y" ) ;  
where 

M ( t )  and L ( t )  = (LI ,  L2, . . . , L" ) a r e  respectively an n X n  matrix and an n - 
dimensional vector of the coefficients of l inear system (3 .63 ) .  
over repeating indices is implied. 

end we will t rea t  it a s  a problem of minimizing y o ( t l )  for the sys tem 

Summation 

The problem should be reduced t o  the form (3 .43) ,  (3 .44) ,  and to  this 

(3 .63 )  

( 3 . 6 4 )  

(3 .65)  

with constraints (3 .64 )  and an additional condition yo(&) = O .  
In this case f o ( t ,  y, v) = 0 ;  

Let u s  find the independent first integrals of (3 .65 )  

F(y0, yI)-yi ; g ( f ,  y, v )  = ( a i j y ' g j ,  M ( f ) y ) ,  
h = ( b ( t ) y ,  L ( t ) ) .  

They have the form 

(3 .66)  

(3 .67)  

(3 .68 )  
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Lj 
L" 

qj=yl---gy", j =1 ,2  ,..., n-1. 

Equations ( 3 . 5 2 )  take the form 

( 3 . 6 9 )  

( 3 . 7 0 )  

( 3 . 7 1 )  

where yi,q'satisfy (3 .68) ,  (3 .69) ;  M j i s  the j - t h  row of the matr ix  M. 

( 3 . 7 0 )  and (3 .71) ,  we obtain 
Expressing y j  in t e r m s  of q' and yn f r o m  (3 .68) ,  ( 3 . 6 9 )  and inserting in 

( 3 . 7 3 )  

where gkl ( t ) ,  g k n ( f ) ,  g n n ( f ) ,  f7-l; (f), I'(f) a r e  the coefficients obtained after 
the substitution and collection of s imilar  t e rms ;  q k  ( 1 )  are the new phase 
coordinates; y" ( t )  are the new control functions. 

If g,,#O, Problem 2 is non-degenerate and can be solved in finite form 
by the standard methods, e. g., by applying Jacobi 's  c lass ical  condition. 
The original problem is thus also solved. 

A problem of this kind arises in connection with the second variation of 
the functional i f  the extremal  (the solution of the Lagrange-Euler equations) 
is degenerate, i. e., i f  Hww=O along the extremal.  

3. 5. 4. An example with constraints on w 

Minimize the functional 

f ,  

I= J (y' --(yZ)Z) dt 
0 

with the constraints 

( 3 . 7 4 )  

( 3 . 7 5 )  

( 3 . 7 6 )  

( 3 . 7 7 )  
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Y' (o)=Y2(o)=o, Y'(fI)=Y:, Y2(tl)=Y:, (3.78) 

where ti is free. 
To solve the problem, we find the first integral  of the system 

*=Y2, d.t dy2=-1, d.t (3.79) 

The first integral  is given by 

(3.80) 1 
11 = Y' + T ( Y 2 Y .  

Changing over  t o  new variables q, y', w in (3.74), (3.75), (3.76), we 
expres s  ( Y ~ ) ~  i n  t e r m s  of q and y1 f rom (3.80): 

I ,  

I = i  (3g1-2q)dt; (3.81) 
0 

. 2(q-5,') . (3.82) 9= 
Y '  ' 

$=VZ(r)- y1)w. (3.83) 

Since the right-hand s ides  of (3.81) - (3.83) are independent of t and t l  
is free, we can conveniently change over t o  a new argument r) . By (3.77), 
11>0, and th is  substitution is legitimate. The problem is thus reduced t o  
the equivalent problem of minimizing the functional 

(3.84) 

with the constraints 

(3.86) 

Y'(qo)=O; y'(91)=y;; o<yy'<'l. (3.87) 

1 
%=O; 'l1=y; +T(y;)!;  

To solve the problem, we investigate the maximum of the function 

(3.88) 

R attains a maximum with respect  t o  w under the following conditions: 

cpgI=O, any w 

yp>O,  w = A ;  

(3.89) 

(3.90) 

yyi<O, w = - A .  (3.91) 
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In the f i r s t  case, R takes  the f o r m  

( 3 . 9 2 )  

The dependence of R on y1 for some fixed q is shown in Figure 3 .3 .  
It is readily checked that the maximum R for every fixed q is attained 

fo r  yl(q)= (l--f+)q (see Figure 3.3).  The solution of Problem 2 thus has  

the f o r m  

( 3 . 9 3 )  

It is readily seen that th i s  solution gives an absolute minimum of the 
functional (3 .84) ,  i f  the differential constraint is ignored. 

FIGURE 3.3 

Inserting ( 3 . 9 3 )  in (3 .85 ) ,  we see that re,=cy, for  q = O ,  q = q l ,  so  that the 
constraints imposed on w break down. Therefore, on the initial and the 
final sections, re, is boundary control. Using th i s  information, 
we construct a t r a i l  minimizing solution, which consists of the following 
th ree  sections (Figure 3 .4 ) :  

boundary condition y'(q0) = O  . 
I. O < q < q z .  ( y ( q ) ) ~  is the solution of equation ( 3 . 8 5 )  for w = A  and the 

11- q*<v<v3 ,  [E(tl))ll=y(tlb 
111. q 3 < q  <q,, ~ ( q ) ) , , ~  is the solution of equation ( 3 . 8 5 )  for w = A  and 

The function q(q, gl) is defined on I, I1 in the fo rm 
the boundary condition yl(ql)=gi.  

IP(% 9')=$ ( q ) Y 1 + ~ ( q ) ( Y ' - ~ ( q ) ) z ,  (3 .94 )  

where 9 (q) , o(q) are some continuous and piecewise-differentiable 
functions of q . 
f o r m  

The sufficient conditions of a local maximum of R on I and I11 have the 

Vu' >o; (3 .95 )  

P y t ~  RU* (q, gl, A )  =$'+Hut EO, ( 3 . 9 6 )  
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FIGURE 3.4 

( 3 . 9 8 )  

At the points q 2 ,  q 3  we should have 

Otherwise, the function cp(q, y') w i l l  be discontinuous in y1 at these 
points (on section II, ' p l / l = O ) .  

It is readily seen that the solution of equation ( 3 . 9 6 )  on I11 with boundary 
conditions ( 3 . 1 0 0 )  is positive. 

Indeed, consider the general  solution of ( 3 . 9 6 )  

12 

di=e-Fj: g(q)eFdy; F ( ~ ) = J  h(r l )dy,  
'i3 I 3  

where h(q )  is a coefficient before I) in ( 3 . 9 6 ) ;  g(q) =f$. 
On this section fog, >O (see Figure 3 .3 ) .  

A s imi l a r  situation is observed on section I. 

Hence I ) ( q ) > O  for all 
rl t (q31 111). 

The only difference is that 
the boundary condition he re  is defined for the right end point and e,  < O ,  
since y'<Yl. Here again +(q) >O everywhere on [YO, q ~ ] .  Since 'pq is 
continuous, we conclude that there  exists a neighborhood of the curve 
Y(')(q) where 
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(3.101) 

Consider condition (3.97). 
with a positive right-hand side 

This inequality may be replaced by an equation 

0' f23f1,nA + H U l g *  = E (q), (3.102) 

where E ( ~ ) > O  is some piecewise-continuous function of q . 
on I and I11 ( a  Cauchy problem for  a l inear  differential equation). 
follows that there  exis ts  a function cp(q, y') such that the solution 
constructed on I, I11 corresponds at least  to  a local maximum of P(y ' ,  q), 
and the solution on I1 corresponds to  an absolute maximum of R ( q ,  y', v). 
We thus see that the solution constructed above ensures  at least a s t rong 
local minimum of the functional in our problem. 

constraints (3.77) imposed on the 6ontrol function iu. 
not change over  to  Problem 2 a t  the very beginning. 
change over  to  new phase coordinates (yl, q )  and the solution of the problem 
was thus considerably simplified. 

Equation (3.1 02) with boundary conditions (3.1 00) is a pr ior i  solvable 
Hence it 

In this  example, Problems 1 and 2 a r e  not equivalent because of 
As  a result, we did 

However, we did 

R e m a r k s  

1. Problem 2 (the function R1 ) may turn out t o  have the same singularities 
a s  the original problem (the function R ). 
then can be applied repeatedly to  analyze Problem 2. 

A pract ical  shortcoming of the above method is that it requires  
determination of the f i rs t  integrals of some system of ordinary differential 
equations (3.50). In applied problems and, in particular, in most problems 
of flight dynamics, equations (3.50) a r e  sufficiently simple and their  f i r s t  
integrals a r e  obtained without difficulty. 

case  when the vector function h depends on the control function v ,  but so 
that for fixed I and y the vector h maintains a constant direction when v 
is varied. In other words, the unit vector function h ( f ,  y, v ) / l h ( t ,  u, v) I i s  
independent of v ,  and no constraints a r e  imposed on w. 

The method of multiple maxima 

2. 

3.  The above method can be generalized without any changes to  the 

h We write h ( t ,  y. u ) w  in  the form h,( t ,  y)iul ,  where h l=  - w l =  I h l w ,  and 

The problem is thus reduced to  the 
I f l  I 9  

w l i s  used a s  the new control function. 
one considered above. 

3. 5. 5 .  Systems with severa l  unconstrained control functions 

Let the functional (1.1) and system (1.3) have the form 

(3.103) 
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I I  I II I I I 1 1 1 1 I  I 

b 

I1 I I I I I I I I I  I I  I 1 1 1 1  I I 111 I I 

(3.104) 

where u l ,  I= 1, 2, . . . , k , a r e  the components of the control vector u . 
se t  Vu coincides with the space U . 
and differentiable for every t E  ( t o ,  t l ) ,  y E V ,  , and the functions g, f o  a r e  
moreover bounded for  bounded t, y, u . 

Although the problem can be solved by the method of the previous sub- 
section, using seve ra l  recursive reductions to  Problem 2, we will describe 
a different approach which a pr ior i  enables US to  indicate the conditions to  
be satisfied by the vector functions h,(t, y) so that the function 

The 
The vector functions hl a r e  continuous 

(3.105) 

f o r  every t E  ( t o ,  t l )  attains a maximum on 

Y ( 4  E V,!t), E ( t ) E V U ,  lE l#cQ.  (3.105a) 

We write F o r  simplicity, we assume V u ( t )  to be an open bounded region. 
R in the form 

R=A(t,  y ) u + B ( t ,  Y), (3.106) 

where A ( t ,  y)  is a vector with components cp,hl(t, y), I = l ,  2, . . . , k ,  

B ( t ,  Y) =cpYg(t, Y) +cpr-fO(t, Y).  

First we prove the following lemma. 
L e  m m a .  

fixed f , it is necessary and sufficient that 
F o r  the function (3.106) to  attain a maximum on (3.105a) for a 

1)  A ( t , y ) - 0 ,  (3.107) 

2) B (f,F)= max B ( t ,y) .  (3.108) 

P r o o f  . Necessity. We write the vector u in the form 
UEV,(t) 

u = p ,  

where v = I u I ;  e is a unit vector L. I U I  
The inequality 

R ( f ,  y, U ) - R ( f ,  Y ( t ) ,  . ( t ) )  GO 

is satisfied for all  y E v,(t), u f U , i f  and only i f  
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The maximum with respect  t o  e is accounted for  as follows. The 
sca l a r  product AQ is the projection of the vector A on the direction of e .  
It attains a maximum, equal to the magnitude of A ,  if  e points along the 
vector A .  

Suppose that (3.107) is not satisfied and A ( f ,  y * ( t ) ) # O  for  some y=y '* ( ( t ) t  
V,( t ) .  Then, since the first term in (3.109) is positive and the terms 

B ( f ,  Y"((t)) and R ( f ,  J, U) a r e  finite, we can find such Y that inequality 
(3.109) is not true. 

we have 
This  proves the validity of (3.107) and hence of (3.108). since f rom (3.107) 

R ( t ,  y, u )  E B (t ,  Y). 

The sufficiency of (3.107) and (3.108) is self-evident. Q. E. D. 
Condition (3.107) is a sys tem of linear homogeneous par t ia l  differential 

equations for  the function cp : 

(3.110) 

In general, such systems a r e  incompatible. A necessary condition of 
their  compatibility is that the so-called Poisson brackets  for  the functions 
Ll(f, y, vu)  vanish identically (see,  e. g., 691, p. 365): 

(3.11 1) 

Conditions (3.111) constitute a new sys tem of linear homogeneous par t ia l  
differential equations for  cp. Seeing that 

L"J = ( L n .  L i ) ,  

we conclude that the number of these equations is E. 
2 

These equations should be added to  (3.110), eliminating f rom the combined 
set  identities and equations which a r e  l inear  combinations of other equations. 

The subsequent s tages  of the procedure are described in 191, and no 
details a r e  given here. 

Conditions (3.11 1) will be used in the next subsection. 

3. 5. 6. Minimum of the second variation of the functional 
in case of degenerate control 

Consider the system of differential equations (3.11), (3.12) which descr ibe 
the case  of degenerate control of degeneracy k .  
functional (1.1) may be written in the form / 2 /  

The integrand in  the 
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(3.112) 

Equations (3.1 1) may be treated as an ordinary system of differential 
equations with l inear  control funktions yp . Solving (3.12) for  y l ,  say, and 
inser t ing the result in  (3.11), we find 

I/ = F = f ( f , y , % )  + ( f ( f , y , 4 )  - - f ( f . y , 4 ) ) ;  (3.113) 

Fo=fo( t ,y ,u , )  -t YP (fo(f,y,up)-fo(t,y,u,)), (3.114) 

p=2, 3 (...( k +  1, 

where yp a r e  now independent and sat isfy only the following constraints: 

(3.115) 

Suppose that a degenerate control is observed on some section, 
satisfying (3.27) with the zero  closeness function y ( t )  = i j ( f )  and the bas i s  
c ont r ol functions 

u=Zp  ( f ) ,  /3=2, 3, ..., h + l ,  

yP=$ ( t ) ,  p=2. 3, . . .  ( k + l ,  
- 

- 
where y ?  ( t )  satisfy the s t r ic t  inequalities in (3.115): 

k + l  

( 3.1 1 5a) 

Adding smal l  increments 6y3 t o  the functions y ?  ( t )  such that (3.115a) a r e  
still satisfied for the incremented functions @ +dy'  ) with unaltered 

we obtain f rom equations (3.113), (3.114) the corresponding increments of 
the ze ro  closeness function, the integrand function, and hence the functional 
relative to the values on ( Y ( t ) ,  y$ ( f ) ,  U ( f ) ,  Up ( f )  ). F o r  sufficiently smal l  
increments b y p ,  we can retain only the l inear  components of the increments 
~ / ( t ) - y ( L ) ,  which are described by a l inear  system of variational equations 

El(t),  E p ( t ) ,  @=2, 3, . .  . ,  k + l ,  and fixed boundary conditions y(zl) = y ( t l ) ,  

2' =Tu] ( f )  zi + FT? (f) v?, (3.116) 

where 

" L j - - y l ;  y?=y?-;y" 

and investigate the s u m  of the f i rs t  and the second variation of the functional 
to within t e r m s  of higher order .  

It is readily seen that the f i rs t  variation of the functions is ze ro  by (3.27) 
and it thus remains to  check that the second variation i s  non-negative, this 
being the necessary condition for the minimum of the functional. 
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Let Zf be the Hamiltonian of (3.113)> (3.114): 

where 

is the Hamiltonian of (1.3). 
written in the form (see, e. g., /ll/) 

The second variation of the functional is then 

r, 

621 = - J ( ggf //I ( t )  2'21 + Zgf lP(I)z'vp) dtl 

i ,  j = l ,  2 ,...) n; p=2, 3 (. . .(  k + l .  

(3.11 8) 
T* 

The superior bar in (3.116) and (3.118) identifies the first derivatives of 
the vector function F and the function %. 
is implied. 

(3.118) under conditions (3.1 16) and the boundary conditions 

Summation over repeating indices 

The problem reduces t o  investigating the minimum of the functional 

2 (TI) = 2 (T2) = 0. 

No restr ic t ions a r e  imposed on the variables z f ,  vp . 
This problem thus corresponds to  the case considered in the previous 

subsection. To finally reduce this problem to the form (3.103), (3.104), we 
wi l l  formulate it a s  Mayer's problem, i. e., the problem of minimizing the 
final value of z for  zero initial condition, supplementing (3.11 6) with the 
equation 

Go= ZY'//l ( t )  z ' Z f + B u r 1 P ( t ) z ~ V P .  ( 3.11 9) 

Equations (3.110) now take the form 

Lp ( y )  =; ( p 2 0 2 / / ~ l P  ( t )  2) + 'P+'F$ ( t )  = 0. (3.120) 

Here 

Note that only h! depends on the phase coordinates; the remaining hi 
a r e  independent of z ,  so that their  derivatives with respect to zq in the 
Poisson brackets a l l  vanish. 

Inserting the expressions for h i ,  hi in (3.111), we find 

(3.121) 

These combinations should vanish identically in virtue of (3.111). But 
cp,~ PO. Otherwise, condition (1.12) of Theorem 1. 1 is not satisfied. We 
should therefore have 

(3.122) 
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Both t e r m s  on the right a r e  scalar  products of the vectors f and H,. 
Now turning to  equations ( 3 . 2 9 )  and (3 .12) ,  we express  y1 from (3 .12)  in 

t e r m s  of the other y @  : 

Inserting y* in ( 3 . 2 9 )  and collecting s imilar  t e rms ,  we obtain 

a, p= 2, 3 )..., k + l ,  

and the coefficients of these equations coincide with the left-hand s ides  of 
k ( k - 1 )  

(3 .122)  and should therefore vanish. The number of these equalities is- 
2 '  

and, a s  we saw in S 3.2,  in virtue of (3 .123)  they lead to k further equalities 

( 3 . 1 2 4 )  

Equalities ( 3 . 1 2 2 )  were obtained a s  the necessary conditions of a 
maximum of R and a minimum of CD when minimizing the second variation in 
degenerate control problems. 
necessary conditions for optimal degenerate control. 

minimizing the second variation can be solved to  completion by successively 
changing over to  Problem 2.  

They were originally derived in 111 a s  the 

Note that once conditions ( 3 . 1 2 2 )  have been verified, the problem of 

3. 5.7.  A more  general  problem 

Consider the same problem a s  in 3. 5. 2, using differential equations of a 
slightly more general  form: 

i = g ( t ,  y, v) + h ( t ,  I/. w ) ,  ( 3 . 1 2 5 )  

where g ( f ,  y. v) has the same properties a s  in 3.  5. 2, and h ( t ,  y. w) and the 
boundaries w l ( t ,  y)  and zu~)q(t, y)  from ( 3 . 4 5 )  a r e  such that the functions 
h ( t ,  g, w l ( t ,  y ) )  and h ( f ,  y, W z ( f ,  y ) )  a r e  continuous and continuously differen- 
tiable with respect to t and y for all  f e (&,  t , ) ,  ycV , ( t ) .  

The function R for this problem has the form 

R(f9 Y, U, w )  =cp,g(f, gr v) +9)Ilh(t, Y, w) - f0 ( t7  Y> v) +%. ( 3 . 1 2  6) 

We choose q ( f ,  y) so  that for all  i!c ( to,  f l ) ,  y e  V , ( t )  the function R 
attains its absolute maximum on two values of w, w,(t, y) and w 2 ( f ,  y),  

R( t ,  Y, u, wi(t, y ) ) = R ( t ,  Y, 0, ~ ( f ,  y))  = S U P  R ( f ,  Y, V ,  u). (3 .127)  
W E V , ( I .  g) 

We see  f rom ( 3 . 1 2 7 )  that only the t e rm 

cp,'h(t, Y2 w) 
depends on w. 

constraints 
Condition ( 3 . 1 2 7 )  reduces to a certain combination of inequality 
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'pv t Q(t>  (3.128) 

where &(t,  y) is a se t  in the space of vectors r p v ,  and the condition 

c2u(h(t, Y, Wl(t ,  Y))-/7V, y, .cer , ( f ,  y))=O, (3.129) 

Its general  which is a l inear partial  differential equation for the function rp . 
solution is an a rb i t r a ry  continuous and differentiable function of the f o r m  

' p = c p ( f ,  

where q ( t ,  y) = (q', q2,. . . , q"-I) is the set of independent f i r s t  integrals of 
the system of ordinary differential equations 

&=h(f, y, QJ,(f, Y))--h(f, Y, Wzer,(t, Y)), dT 
(3.130) 

with t treated as a parameter.  
Let R , = s u p R .  Then 

W E  v, 
" 

R I = ( P I ? C W L ? ( ~ *  ~9 ~)+'l i .  
1 

We will further investigate the maximum of the function RI  for every 
t 
the additional conditions 

(fo, f , )  on the set of points ( q, y, v )  satisfying conditions (3.45), (3.46) and 

11 =11 (t Y).  (3.131) 

It is further assumed that the function ~ ( t ,  y) satisfies (3,128)L 
Suppose that such a function q(t ,  y) exists and a solution ( q ( t ) ,  y ( t ) ,  v ( t ) )  

has  been found which under the given conditions ensures  an absolute maxi- 
mum of the function RI  for every t c [ t ~ ,  t l ] ;  moreover, conditions (1.12) 
and (3.128) are also satisfied. 
following system of differential equations: 

- 

Suppose that this solution satisfies the 

where V I  ( t ) ,  ~ ( t )  are some piecewise-continuous functions, 

V I  ( t )  + V Z ( t )  = 1. 

If substituting the solution ( y " ( t ) , F ( t ) )  in this system we find that VI, vz 
satisfy the conditions 

VI, 2 ( t )  >o, (3.133) 

then ( t ,  y") 
sliding control with the basis control functions w l ( t ,  y), w*( t ,  y)  and the basis  
vectors  

o and the solution constitutes a ze ro  closeness curve of a 
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(3.134) 

Thus, i f  all the above conditions a r e  satisfied, our  solution defines the 
sought minimizing sequence an_d the_ problem is solved. 
q(t ,  y) exists and no solution ( q ( t ) , y ( f ) ,  u ( t ) )  satisfying all  the above con- 
ditions, we conclude that the sought optimal control may consist of sections 
of different types - boundary sections, Euler sections, sliding control 
sections. On sliding control sections, the function cp(t, y) may be defined 
by the method that we described. 

Problem 2 a s  follows. 

the total  derivatives of q( t ,  y) with respect to t :  

If no function 

As in a problem with l inear control functions w ,  we can change over to  

The initial equations (3.125) a r e  supplemented with the expressions for the 

(3.135) 

Equations (3.125) and (3.135) considered jointly constitute a sys tem of 
(2n-I) equations where, in virtue of (1.131), only n equations a r e  independent 
and which is obviously equivalent to the initial sys tem (3.125). 

We further consider the problem of minimizing the functional (3.43) on 
the set  L of the elements (q ( f ) ,  ~ ( f ) ,  u ( t ) ,  ~ ( t ) )  which only satisfy equations 
(3.135) and (3.131), where q' (f) a r e  new phase coordinates and y, u,  w a r e  
new control functions. 

The set  of new 
control functions ( y ( t ) .  u ( f ) ,  w ( t ) )  is designated D z .  
arguments a s  in 3. 5.2, we readily see  that D 2 z D  and 

The remaining conditions (3.45)-(3.46) do not change. 
Repeating the same 

inf /= inf I < inf 1. 
D, D, D 

Suppose that Problem 2 has been solved. The corresponding optimal 
control G ( f )  may take on values corresponding e i ther to  one of the boundaries 
W I ,  wz of vu. or  to  i t s  interior points. In the former  case,  both wl and 
w2 a r e  optimal values, G=zu1,2. Indeed, the functions 11j (f, y) a r e  
solutions of the partial  differential equations (3.129) ( a  property of the f i rs t  
integralsof(3.130)). Hence it follows that the right-hand s ides  of (3.135) a r e  
not affected when wl is replaced with wz and vice versa ,  so that fi remains  
unchanged. 
.F(t), v"(t), G ( t )  should only satisfy equations (3.135) and condition (3.45); 
y"(t), v"(t), G ( t )  can be approximated t o  any accuracy by constructing an 
appropr,iate sequence in D (sliding control). The solution of Problem 2 
can be constructed in D under certain boundary conditions. In the second 
case, it is not the properties of q( t ,  y) that cause non-uniqueness of Z( f ) .  
A s  a rule, G ( t )  is unique in this case and, when substituted with F ( t )  in 
the original sys tem (3.125), it  defines under the appropriate initial con- 
ditions a unique solution y* ( t ) ,  which does not necessarily coincide with 
the f j ( t )  derived f rom other conditions. 
Problem 2 in general  cannot be constructed in D .  

The degeneracy in this case is k = l  and the functions 

In this case, the solution of 
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Chapter I V  

SOME PROBLEMS OF POWERED 
FLIGHT OPTIMIZATION 

§ 4.1. VERTICAL ASCENT OF A ROCKET IN 
VACUUM 

The present section deals  with a relatively simple problem of rocket 
dynamics, namely that of reaching extreme (maximum) altitude in one- 
dimensional ver t ical  motion in vacuum (airless space). 
gravitational acceleration is assumed. This problem may be treated as a 
simplified model of the general  optimization problem of rocket maneuvers 
in a homogeneous field, which is solved in the next section. 
solution and the specific properties of the solution of the general  problem 
are conveniently illustrated in this simple case.  

may be written in the form 

Constant 

The method of 

The equations of the ver t ical  motion of a rocket with controlled thrust  

where h is the altitude reckoned f rom the surface of the planet, 
velocity, t i s  time, m is the mass, c is the nozzle velocity, g is the 
gravitational acceleration (assumed constant), 
of fuel consumption (the control element), O<P<<BmaS.  The independent 
variable in these equations is the current  mass ( a  non-increasing function 
of time). 

V i s  the 

p is the per-second r a t e  

The following boundary conditions are used: 

ho=O, vo=o, f o = O  (4 .4)  

f o r  m=mo (the rocket s t a r t s  f rom res t ) ;  the values of v ,  and f l  for  m=m, 
a r e  not given. 

Our problem is to  find the motion reaching the maximum altitude at 
the end of the powered flight (i. e., minimize (-hl)). 
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The solution of the problem is divided into two stages: f i r s t  we solve 
the problem for  any fixed fl such that 

and then c a r r y  out optimization with respect t o  t i ,  which yields the final 
solution. 

The functions R and (D of our problem are written in the fo rm 

1 C I  1 
ci= 'Ph (-a v) t 'Pv (- ,+p)- 'Pt - FJ t 'Qm; ( 4 . 5 )  

1 Note that - may be treated as a l inear control function and equations 

We will use the method of multiple maxima. 

B 
(4.1)-(4.3) have the same f o r m  as the equations treated in 3. 5. 2. 

differential equation 
Solving the partial  

we obtain the f i r s t  integrals E ,  q of the characterist ic system 

namely 

(4.9) 1 
2 

E=V+gf,  v=/Z--vt-- gt?. 

The general  solution of ( 4 . 7 )  is an a rb i t r a ry  continuous differentiable 
function V I ( &  q, m ) .  
over to  new variables E and q , we find 

Inserting this function in (4.5), (4.6) and changing 

The function rp~ is given in the fo rm 

'PI = h E , E  t 9wv, (4.11) 

( 4 . 1 2 )  

and (4.10) takes the f o r m  

@1= - - % - - € 1 ~ 1 + ~ ~ € ~ ~ l  t9(1)%++ 1 (4.13) 

1 2  

2 @i=-gfi=const=min@, 
€1.1, 

(4.14) 
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fo r  any E l ,  q l .  The function R I  takes  the final f o r m  

(4 .15)  

Let u s  investigate the minimum of th i s  function'# for any fixed me (ml ,  mo). 

The extreme values of t over the interval (mo, m l ) ,  i. e., tL(m) and 
are obtained f r o m  equation (4.3) with the appropriate boundary 

The minimum is clearly obtained at  the lower limit value of f I i.e., fL(m) .  

t u ( m ) ,  
conditions and the constraints on p . The lower limit tL(m) is the solution 
of equation (4.3) for P = p m a x  which passes  through the point (mo, to) ,  and 
tu(m) is the same solution passing through the point (m,,  t l )  (Figure 4.1). 

fo r  any m < m o ,  and no solution passing through (m l ,  I I )  may lie above tu(m) 
fo r  any m > m l ,  since th i s  would necessitate $ > P m a x .  The two straight 
l ines tL(m) and fu(m) are parallel. 

The resulting motion 
s t a r t s  f rom the initial point along the lower limit t=tu(m) and then 
abruptly "jumps" at m=ml f r o m  f L ( m l )  t o  tl . In other words, maximum 
thrust  P = P m n a  is maintained until all the fuel has  burnt out, followed by a 
coasting stage until t l .  

Indeed, no solution of (4.3) passing through (mo, t o )  may lie below t ~ ( m )  

This concludes the f i r s t  stage of the solution. 

FIGLIRE 4.1 

Here t ( m )  is a discontinuous function. We can restrain the solution t o  
remain in D by replacing the vertical  segment issuing f rom the point t1 (see 
Figure 4.1)  with an inclined segment extending to intersection with t ~ ( m )  
and making the slope factor of this segment go t o  infinity k - c o .  
achieved by constructing a control sequence with p-0 over a finite length 
of t ime. This sequence satisfies all the conditions of Theorem 1.1. 

Indeed, condition(l.12) is satisfied invirtue of(4.14) andcondition(l.11) is 
similarly satisfied, since on this sequence the function R defined by (4.15) 
is minimum everywhere, except a se t  of points m whose measure goes 
to  zero.  

problem), it suffices t o  integrate (4.1)-(4.3) in o rde r  t o  obtain the 
dependence of hl on tl and then find the maximum of h l .  

This is 

To find the optimum value of tl (the solution of the second stage of the 

It is readily seen 

The condition of maximum R (Theorem 1.1) is replaced, as i s  readily seen, by a condition of minimum 
when a decreasing argument is substituted for an increasing argument. 
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that the sought f i  corresponds to  Vr=O , and the maximum value of h l  is 
given by 

(4.16) 

The reader  wi l l  be able to  apply the same  method to  solve the problem 
of soft ver t ical  landing with minimum velocity on the surface of a planet 
without an atmosphere, for  given initial conditions. 

4 .2 .  OPTIMUM MOTION CONTROL OF ROCKETS IN 
A HOMOGENEOUS GRAVITATIONAL FIELD IN 
VACUUM 

Various problems of rocket dynamics are concerned with maneuvers 
which must be performed within a relatively sma l l  region of space and in 
a comparatively short  time, so  that the real gravitational field acting on 
the vehicle may be treated a s  constant (the homogeneous field approximation: 
the r ea l  field depends in general  on the position of the spacecraft and the 
t ime)  . 

For maneuvers performed near  the ground within a sphere of some 
100 km radius, the relative e r r o r  of this  approximation is about 1.50/0. 

As the rocket moves far ther  f rom the pr imary  center  of attraction, the 
e r r o r  decreases  (other conditions being constant), so that a midcourse 
correction on a lunar o r  an interplanetary t ra jectory may be treated a s  
taking place in a homogeneous field. 
analysis and leads to  effective solution of numerous optimum problems of 
rockets  dynamics 18, 91. 

The general  s t ructure  of optimum motion control in a homogeneous 
field has been investigated by a number of authors 1 2 ,  3, 111. 

This significantly simplifies the 

4. 2. 1. Statement of the  problem 

The motion of the center of mass  of a rocket powered by a thrust  vector 
in vacuum in a homogeneous gravitational field i s  described by the following 
se t  of equations: 

1 
(4.17) = - - v. 

e '  
(4.18) 

(4.19) 

where r=  (ri, r2, r 3 ) ,  V -  (Vi, V 2 ,  V 3 )  are ,  respectively, the radius vector 
and the velocity vector of a point in the iner t ia l  f r ame  of reference; 
g= (gl, g2, g3) is the constant gravitational acceleration vector; p is the unit 
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th rus t  vector (a  control element); 
variable); 
c is the nozzle velocity. 
motions a l so  satisfy the constraints 

t is time; 

In addition to  (4.17) - (4.19), the admissible 

m is the mass (independent 
p is the rate of mass consumption (another control element); 

(4.21) 

(4.22) 

for  t1=tlfand m=ml .  

functions 
Here B ( m )  is a se t  in the vector space ( r ,  I!). The se t  of control 

satisfying the above conditions will be designated D . 
find a control function Z(m)  in D on which the functional - some function 
F ( r , ,  VI)  - attains its minimum. 

If the sought control function Z(m)  does not exist in D , we will have to  
construct a minimizing sequence Es(m) in D . 

Our problem is to 

4.2 .  2. Transition to Problem 2 

We construct the functions 

< D ( ~ U ?  Vu, T I .  V1)=F{r17 V I )  t ?(r l ,  V I ,  f,, ml)- y ( r o ,  V o ,  to, mol. (4.24) 

The f i r s t  two t e r m s  on the left in (4.23) a r e  sca la r  products of th ree-  

The function 
dimensional vector s. 

is defined a s  the general  solution of the par t ia l  differential 
equation 

?,V f pvg t '41 =o. (4.25) 

where the left-hapd side is the coefficient before 

the function R . 
in expression (4.23) for  

B 
The solution of this  equation has the form 

'p= ' P I (€ ,  rl, m), (4.26) 
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where 
character is t ic  system of equation (4.25): 

E=([', 52, ~ 3 ) ,  q=(ql,  92 ,  q3)) are the vector first integrals of the 

d r  
d t  
-_ - V; 

g. d" - -_ 
dt  

(4.27) 

(4.28) 

It is readily seen that the character is t ic  equations in th i s  case descr ibe 

The f i r s t  integrals E, q are given by 
the coasting of a point in a homogeneous field. 

E=V-ggt; (4.29) 

(4.30) 1 
2 

q =  r - Vt f- gt2. 

Inserting the solution (4.26) in expressions (4.23), (4.24) for R and '3 
and changing over to  new variables, we obtain 

(4.31) 

The functions R I  and 01 require further investigation. In accordance 
with the theory of 3. 3. 2, this transformation of the functions R and CP may 
be interpreted as a transition to Problem 2, which ca l l s  for minimization 
of the same functional over the se t  D, characterized by the same system of 
boundary conditions and constraints and a new system of differential 
relations: 

E ' =  --L p '  (4.33) 
m 

where the components of the vectors E, q play the role of phase coordinates, 
and the components of p and the t ime t are the control elements. If 
equations (4.33), (4.34) are supplemented with equation (4.19), the resulting 
sys t em will be equivalent to  equations (4.17) -(4.19). Suitable transfor- 
mation of coordinates will move one sys t em into the other. 
for  the functional and the boundary conditions change accordingly under th i s  
transformation. Since (4.33), (4.34) contain fewer constraints than 
(4.17)-(4.19), the se t  D1 is wider than D ,  i. e., D, xD, so that 

The expressions 

inf f < inf Z. 
D, D 

(4.35) 

We will show in what follows that the equality sign applies in (4.35), i. e., 

Note that (4.33), (4.34) have a peculiar characterist ic:  the right-hand 
the initial problem may be replaced by Problem 2. 

s ides  of these equations are independent of the phase coordinates. 
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The necessary conditions for a minimum of R are the following: 

(4.36) 

(4.37) 

where 

(4.38) 

Here g m ) ,  T(m) are the values of x, 6 along the soug..t optima 

Relations (4.36) - (4.38) correspond t o  the adjoint system and the condition 
solution. 

of minimum of H ( a  function with a decreasing argument) in Pontryagin's 
maximum principle. These equalities thus give the necessary conditions 
of optimality. By (4.36), (4.37), $E, are constant (since the right-hand 
s ides  of (4.33), (4.34) are independent of the phase coordinates). 

The function H has the f o r m  

H = - L  P ( h - h f ) .  (4.39) 
m 

The minimum of H is evidently attained f o r  

FIGURE 4.2 

(4.40) 

(4.41) 



The minimum of HI  with respect t o  f coincides with the maximum of the 
radicand in (4.41), which is a quadratic tr inomial in I .  If $ 7  #O , the 
coefficient before t2 is positive, so that the radicand in (4.41) can attain 
a maximum only for  extreme values of 1 ,  i. e., t ~ ( m ) ,  tu(m) (Figure 4.2). 

Comparison of the values of H I  at the lower and the upper l imits yield 
the following conditions fo r  optimum selection with respect t o  t : 

(4.42) 

Since the left-hand side of the inequality in (4.42) is constant and the right- hand 
side is a monotonically decreasing function of mass ,  the motion f r o m  mo 
t o  m l  ( in  the direction of decreasing mass) can have at most one control 
change, necessarily f rom the lower limit I L ( ~ )  t o  the upper tu(m). 

In particular cases,  depending on the values of $ ( E )  ?;;,s), control functions 
without abrupt change are possible: e i ther  t = t ~ ( m )  or f = f u ( m ) .  

For $(,,)=O, the function HI is independent of f andthecondition of 
minimumof HI with respect t o  t is satisfied by any piecewise-continuous func- 
tion t ( m )  varying between the fixed l imits.  
the initial or the final value of the vector is free. 

If the function F1 i s  concave and the boundary conditions are fixed or 
defined by l inear forms in t e r m s  of the initial and the final values of the 
coordinates (the components of the vectors EO, q o ,  El, q~), the necessary 
conditions (4.36) -(4.38) are also sufficient, since the right-hand s ides  of 
(4.33), (4.34) are independent of the phase coordinates. Therefore each 
solution satisfying the above conditions is of necessity optimal. In par-  
ticular, if the limit value q, or  90 of the vector q is free,  the optimal 
solutions are inherently not unique. 
functions 

This case is observed when either 

Any combination of the control 

where J., I E )  is selected so  that the boundary conditions are satisfied and 

solution of Problem 2. 
equation (4.34) f rom system (4.33), (4.34) and considering the problem for  
equation (4.33) only, whose right-hand side is independent of t . 
functionals, conditions (4.36) -(4.38) are only necessary.  To find the 
optimal solution in this case,  a fur ther  analysis is needed (e. g., fur ther  
investigation of R ). However, since conditions (4.36), (4.38) are 
necessary,  they descr ibe the s t ructure  of the optimal solution. 

t ( m )  is any function falling within the admissible limits, is an optimal 
This can be verified directly, by eliminating 

In the general  case of nonlinear boundary Conditions and nonlinear 
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4.2.  3. The solution of Problem 2 in the original 
set. The s t ruc ture  of optimal control functions 

The solution of Problem 2 belongs to the se t  D l x  D . If th is  solution in  
the (t. m)  plane sat isf ies  equation (4.19) with the given constraints on $ , it 
a lso belongs to  the original se t  D and is thus a solution of the original 
problem. It is readily seen that solutions of the form shown in Figure 4.2 
( the case  $(?) #O ) satisfy equation (4.19). The sections of the upper and 
the lower boundaries correspond to  $=pmax (motion with maximum thrust), 
and the jump at  the switching point corresponds to $=O (coasting with the 
thrust  off). The direction of the thrust  vector along the powered sections 
is determined by equation (4.40). 
c lass  D ,  which corresponds to  continuous functions t (m) ,  the solution of 
the problem is provided by a sequence which in the ( t ,  m)  plane (Figure 4.2) 
corresponds to a sequence of the Functions t ( m )  obtained when the sudden 
jumps at  the points mo, mi ,  m ,  a r e  replaced by inclined straight sections 
with the slope factor going to  infinity ( a s  in § 4. 1). 

equations (4.36) -(4.38) in this  case  incorporates all the piecewise- 
continuous functions t ( m )  satisfying the constraints tL(m),<t(m) “tu(m) on 
[mi, mol and the boundary conditions t o ,  ti. 
which do not satisfy equation (4.19).  If the conditions a r e  nonlinear at the 
two end points, fur ther  analysis is required in order  to  find the optimal 
solution of Problem 2. There is danger, however, of ending up with an 
optimal solution which corresponds to  a function t ( m )  that does not satisfy 
equation (4.19). 

In order  to a s s e s s  the imminence of this  danger, let  us  consider the 
solution of system (4.33), (4.34) for  $(,,,=O. 

If we s t r ic t ly  confine the solutions to  the 

The case $( , )=O requires  special  consideration. The solution of 

These functions may include those 

By (4.40) we have 

Hence 

m 

(4.43) 

(4.44) 

(4.45) 

We see  f rom (4.44) and (4.45) that the vectors  (El-&,) and (ql-qo) a r e  
collinear with the vector p and the ends of the vectors  (qi- qo) define a 
segment in the direction p with the end points 

(4.46) 
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The sought optimal value of (q,-qo) must lie inside this segment. If it 
coincides with one of the end points, the corresponding function tL(m) or 
tu(m) is unique and is represented by equation (4.19). If, however, it  lies 

inside the interval, there  are infinitely many solutions t ( m )  satisfying the 
only condition 

(4.47) 

Among these solutions, we can always choose a set of functions t ( m )  
satisfying equation (4.19) and the appropriate boundary conditions. A 
suitable function t ( m )  may be sought in the f o r m  

(4.48) 

where the constant a is readily obtained f r o m  (4.47). 
above that i n  any case the solution of Problem 2 incorporates the solution of 
the original problem, which is readily derived f rom the former.  
indeed have the equality sign in (4.35). 

It follows f r o m  the 

We thus 

4.2.4. Generalization to the case of free end points 

The above resu l t s  significantly depend on the construction of the limit 
values of t , which can be done fairly easily for  the case  of fixed end points. 
The solution of the problem with f r ee  end points belongs to  the set of 
solutions of problems with fixed end points and therefore has  the same 
structure  as before. 
be obtained by varying the general  solution of Problem 2 with fixed end 
points with respect t o  these parameters .  
problems seeking minimum t l  and maximum m l :  the fo rmer  since t is a 
control element in Problem 2, and not a phase coordinate, and the la t te r  
since problems with fixed ml a r e  meaningless. 
can be solved by introducing new variables 

t = a t ;  m=bp, 

where z, p are the new variables (with fixed end points), and a and b are 
introduced in (4.33), (4.34) as additional phase coordinates with the 
appropriate supplementary equations d = O ,  b’=O. It is readily seen that 
the s t ructure  of the sought solution remains unchanged in this case also. 

The additional conditions of optimum for  mo, to, ml can 

The only exceptions a r e  the 

The corresponding problems 

Indeed, the equations of Problem 2 in th i s  case take the f o r m  

(4.49) 
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where the derivatives are with respect t o  p, and the upper and lower 
l imi t s  of t ( tu (p)  and t ~ ( p ) )  are constructed using the e.quation 

b l  - - - 
a B  

with fixed boundary values t o ,  PO, ti, pl . 
equations 

They are described by the 

(4.50) 

The functions H and H I  for  th i s  system a r e  obtained by substituting a t  
for  t i n  (4.39) and (4.41) .  Since the right-hand s ides  of these equations 
a r e  independent of E and 9 ,  the vectors and $J(,,, are again constant 
along the optimal solution, so  that all the previous conclusions remain in 
force.  

and gw , 
The new system of equations is supplemented with equations for  

where the t e r m s  with the derivatives 'LUand %Uaccount for  the depen- 

dencc of the constraints fo r  t on a and b . 
of i t s  limit values, these derivatives vanish. 
the equation of the corresponding boundary is differentiated. 

These comments are not t o  be regarded as practical  recommendations 
for  the solution of optimum problems. Their a im is to  clarify the general  
s t ructure  of the solution. In practice, these problems may sometimes be 
solved by considering the conjugate problems, namely the maximization of 
the coordinate for fixed end points to ,  mo, m l ,  t l .  

da a b  
When T takes other than one 

For the limit values of t , 

4. 2. 5. Singular control 

Sometimes the condition of maximum of H with respect t o  u does not 
This permit identifying a finite number of potential optimum programs. 

situation is encountered, e. g., when one of the control functions en te r s  the 
Hamiltonian in l inear  f o r m  and its coefficient vanishes in the optimal 
case .  The corresponding cases  are known as  s i n g u l a r  c o n t r o l  ( in  
the sense of the maximum principle). The necessary conditions of the 
maximum principle for the original problem often do not permit reaching 
definite conclusions regarding the optimality of these control functions, 
and this in i t s  turn interferes  with the elucidation of the general  s t ructure  
of the optimal control. 
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Let us  consider th i s  aspect i n  more  detail. We will use the equations 
of motion in new variables (4.33), (4.34), (4.19), which are equivalent to  
(4.17) - (4.19). 

The function H for  these equations has the form 

(4.51) 

where by the conjugate system q(5) and 
described by the equation 

are constant and $ ( t ) ( f n )  is 

(4.52) 

Here $( [ ) ( f n )  is the control switching function. 
Along the singular control, p is given by (4.40) and 

+ ( I )  = 0. (4.53) 

By (4.52), condition (4.53) leads to  

The last  equality is satisfied under the following conditions 

(4.55) 

2 )  $(l)=o. (4.56) 

Condition (4.55) corresponds t o  1 
- =O (pulsed control). 
B 

This is a case  

of so-called pulsed singular control. 
vestigating Problem 2 analogous to  the original problem, with t treated as 
a control element. 
point of the quadratic tr inomial in f in the radicand in (4.41). 
coefficient before t is positive, the Hamiltonian has a maximum (and not 
a minimum) with respect t o  t in Problem 2. 
singular control of the type being considered is not optimal. 

condition (4.56) may be optimal and as a ru le  they are not unique. 
s t ructure  of optimal control i n  th i s  ca se  has  been fully elucidated. 

Its optimality can be elucidated by in- 

It is readily seen that (4.55) corresponds to  a stationary 
Since the 

The conclusion is that the 

We have seen before that the singular control functions satisfying 
The 

4. 2. 6.  Generalization t o  the case of multistage rockets 

The preceding considerations can be generalized t o  the case of multi- 
stage rockets when the engine of each stage has  its own maximum thrust .  
The argument in th i s  case is conveniently chosen as the characterist ic 
velocity, which unlike m a s s  is a continuous function of time: 



Equations (4.33), (4.34) take the f o r m  

-=p; dE d'l=-pPt, 
du du 

and equation (4.19) is written as 

(4.57) 

(4.58) 

where m i ( u ) ,  p ( u ) ,  u i ( u ) ,  c ( u )  are known piecewise-constant functions of 
u (ui, m i  are the character is t ic  velocity and the mass of the remaining part 
of the rocket when a stage is jettisoned). 

It is readily seen that expression (4.40) for the optimal control function 
p and the radicand in H I  do not change in this case.  
admissible values of t changes. It is constructed along the s a m e  lines as 
before; i t s  f o r m  is shown in Figure 4.3. 
fL(u)  l imits of f for  u E (uo, u ~ )  are solutions of (4.58) for  t ; t ~ , ( u )  passes  
through the point ( t o ,  u ~ ) ,  and tu (U)  through the point (ti, Ui). Since t ~ ( u )  
and tu(u) are  monotonic functions and the interval ( ~ L ( U ) ,  t u ( u ) )  is fixed, 
the previous resul ts  remain applicable. 

Only the region of 

Both the upper fu(u) and the lower 

FIGURE 4.3 

The above resul ts  are generalized t o  the case when the original equations 
have the f o r m  

(4.59) 
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where f l  ( t ) ,  f ~ ( t )  a r e  some piecewise-continuous vector functions such 
that the integrals 

exist. In this case, only the expressions of the f i rs t  integrals E, q in 
t e r m s  of r, u, t change. 
relating to the realization of i t s  solutions and singular controls remain  
unchanged. 

The general  variational problem of the dynamics of a point of varying 
m a s s  in vacuum in a homogeneous gravitational field thus has been reduced 
completely to a new Problem 2 for sys tem (4.33), (4.34), with the mass  
appearing a s  the argument, the coasting integrals of the point mass  a s  the 
phase variables, and the thrust  direction p and time t a s  the control 
elements. 
and the boundary conditions for t and m. The right-hand sides of 
(4.33), 
a s  a result ,  the adjoint factors a r e  constant. The investigation of 
Problem 2 gave the following results.  

1. Optimal control in general  may comprise two powered sections of 
maximum thrust  separated by a coasting stage. 
Pmax-oo,  this corresponds to  a case of two-pulse motion, when the f i rs t  
power pulse i s  applied at the initial instant and the second pulse at the 
final instant. 

vector 11 is either f ree  or is fixed so that the vector increments ql-qo and 
E I - E ~  a r e  colinear, the optimal solution is not unique. 
maximum principle, these solutions constitute the singular control for the 
original problem. 

Pulsed singular control is non-optimal and is not included in the 
s t ructure  of optimal solutions. 

The s t ructure  of optimal solutions described above i s  fundamentally 
independent of the number of stages, even if  the maximum thrust  potential 
of each stage is different. 

The equations of optimal control can be readily integrated analytically. 
Any particular optimization problem for motion in a homogeneous field 
thus may be solved a s  a problem of minimum of a function of a finite number 
of variables, although this is not a general  recommendation. 
of cases,  proceeding f rom the specific features  of particular problems, the 
expressions of the control functions may be markedly simplified before 
integration, and the final result  is thus obtained by a shorter  path. 

The equations of Problem 2 and the conclusions 

The constraints on time a r e  provided by equation (4.19) 

(4.34) a r e  significantly independent of the phase coordinates; 

In the limit, with 

2 .  With special  boundary conditions, when the final value of the 

In t e r m s  of the 

3. 

4. 

5. 

In a number 

$4.3. VERTICAL ASCENT OF A ROCKET IN THE 
ATMOSPHERE TO MAXIMUM ALTITUDE 

The present section is devoted to  the solution of a problem presented 
in Introduction (Examples 1.1 and I. 2). This problem of rocket dynamics 
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has been treated by a number of authors /4 ,10,13/ .  
is of immediate practical  interest  for programming the thrust  of sounding 
rockets, and on the other hand, it may be regarded a s  a model of more  
complex, two-dimensional and three-dimensional problems of rocket 
dynamics. Proceeding f rom the considerations in the Introduction, we s e e  
that solutions satisfying Eu le r ' s  equation a r e  not necessarily optimal. The 
analysis that follows not only provides an illustration of the technique but 
actually solves the problem in full form and proves the optimality of the 
solutions. 

maximum altitude among all  the admissible motions satisfying the conditions 

On the one hand, it 

Let us  briefly re i terate  the problem. Find the motion reaching the 

(4.60) 

where h, V,  m a r e  the altitude, the velocity, and the mass  of the rocket; 
X(h,  V )  is the drag; 
c is the nozzle velocity. 

As  is readily seen, the equations of motion (4.60)  contain the controlled 
thrust  P in l inear form, SO that the method of multiple maxima can be 
applied. 

P is the thrust; g(h )  is the gravitational acceleration; 

The functions I? and 0 for  this problem take the form 

The equation of multiple maxima in this case reduces to  

9" c - ym = 0 
m 

and i t s  general  solution is 

Y = Y i ( f ,  h,  V(v, m)), 

where 

(4.63) 

(4.64) 

? ( V ,  nz)=V-clnmo. m (4.65) 

The physical meaning of the first integral  q is the difference between 

The equations of Problem 2 have the form 
the actual velocity and the characterist ic velocity of the rocket. 

(4.66) 1 
m 

h = V ;  q =  - - X ( h ,  V ) - g ( h ) .  

Seeing that the t ime of motion is not fixed and q is a monotonic function 
of time ( fl is s t r ic t ly  negative by (4.66)), we may change over to  a new 
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variable, dropping the equation for  t . 
vestigating the one equation 

The problem thus reduces to in- 

where 

V = ~ I + C  In 5 .  
m 

Now, applying the maximum principle, say, we der ive conditions which 
exhaust the solution of the following Mayer problem: for  every fixed 9 f rom 
the interval ( 1 1 1 .  90) 

(4.68) 

and at the final instant 

f ( h , ,  rl l ,  m,) = 0. (4.69) 

By (4.69) ,  V l = O ,  i. e . ,  

q l = - c ~ n s .  
ml 

The l imits  mL(q)  and nzu(q) a re  constructed using the equation 

(4.70) 

which is obtained by changing over  t o  the new variable q in the original 
sys tem (4.60) and in the boundary conditions. 

r""- 
m 3- 
' 1 0  I 
m 

4m 

' -- b 

FIGURE 4.4 



The constructions in  th i s  ca se  a r e  entirely analogous t o  those considered 
in § 4. 1. 
equation (4.70) for P=O which pass  through the points (mo, q o ) ,  (m,. q,), 
respectively. They are shown in Figure 4. 4. Evidently, muCq0) =mo, 
m ~ ( q 1 )  =ml . 

in Figure 4.4. 
parameters,  all the th ree  cases shown in Figure 4.4, a, b, c, can be 
attained. 
is burnt, followed by coasting to  qi ( VI = 0).  
initial pulse with the fuel burning to  some % ( ( T O )  then a stage of 
throttled thrust  %(q) which satisfies the condition 

The upper and the lower l imi t s  mu(q),  m ~ ( q )  are the solutions of 

The solution of equation (4.68) for the general  ca se  is shown 
Depending on particular boundary conditions and rocket 

Case a corresponds to  a combusion pulse in which all the fuel 
Case b is a combination of an 

(4.71) 

until all fuel h a s  burnt out and coasting to  V=O. 
differs f rom the previous case in one respect only: the boosting pulse is 
replaced by deceleration down to  a velocity P I  corresponding t o  the 
condition 

Finally, ca se  c 

m (q)=m,. (4.72) 

If we are t o  remain s t r ic t ly  in the se t  of admissible solutions, the pulsed 
solutions should be approximated with sequences of control functions with 
the thrust  increasing to  infinity (curves 1, 2, 3 , .  . . in Figure 4.4). 

and I. 2 by differentiating the equation of the control switching line M=O . 
This dependence, in i t s  turn, is equivalent to the relations obtained for 
throttled thrust  programs in 12, 4, 10, 131. 

It i s  readily seen that the solution of Problem 2 constructed in this way 
satisfies the original equations and therefore solves the original problem. 
This solution indicates that the singular control is optimal in the present 
case. 

Condition (4 .71 )  corresponds to  the dependence derived in Examples I. 1 

§ 4.4.  THE DEGENERATE PROBLEM O F  THE OPTIMAL 
POWERED ASCENT TRAJECTORY OF AN AIRCRAFT 

Consider the motion of the center of mass of an a i rc raf t  in the vertical  
plane under the combined action of the gravitational forces, air drag, and 
engine thrust .  The equations of motion are written in the fo rm / 7  f 

m V = ~ ( h ,  v ) - - X ( ~ ,  I/, a)-mgsinO; (4.73) 

mVO=P(h, V ) a + Y ( h ,  V ,  a)-mgcose,  (4.74) 

where h is the altitude, V is the velocity of the a i rc raf t  center of mass,  
m is the mass, 
a is the angle of attack, i. e., the angle between the wing chord and the 
direction of the velocity vector, g is the gravitational acceleration, which 
is assumed constant in magnitude and direction, 

0 is the angle of inclination of the t ra jectory to the horizon, 

P(h ,  V )  is the engine thrust  
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specified as a function of altitude and velocity, 
the l i f t  on the aircraft ,  respectively: 

X and Y are the d rag  and 

(4.75) 

Here @ ( h )  is the density of the atmosphere, S is the effective wing area, 
M is the Mach number, defined as the ra t io  of the velocity V to  the speed 
of sound a ( h )  at a given altitude, cx and cy are the d rag  coefficients; the 
dependence of the drag coefficients on the angle of attack for flight in the 
dense l a y e r s  of the atmosphere is expressed by the relations 

c,(M, a)= c,o(M)+b(M)a2, (4.76) 

cy(M,  a)=c; (M)a .  (4.77) 

Equations (4.73), (4.74) a r e  written assuming sufficiently small  angles 
of attack, and we may therefore  take c o s u =  1 and sin a=a . 
should be supplemented by two further relations 

These equations 

h = I/ sin 8 ;  (4.78) 

m= - P ( k  VI, (4.79) 

where p is the per-second fuel consumption ( a  known function of h and I/ ). 
We will only consider ascent t ra jector ies  with 

o < e < n .  (4.80) 

Horizontal flight with 8=0 is allowed in the limit. 
The importance of this conditions for  flight near  the Earth is quite 

evident. 
section of powered ascent. Thus, using (4.78) and remembering that 
because of the inequality h>O we may eliminate the t ime t f rom the 
equations of motion, w e  change over to  the argument h and write 

For many types of aircraft ,  i t  is highly desirable over the entire 

B - dm 

d h  v s i n  n ' 

(4.81) 

(4.82) 

(4.83) 

If the a i rc raf t  motion is described by these equations, the th ree  numbers 
V ,  0, h may be regarded as a phase vector, and the attack angle a assumes  
the ro le  of a control element. 

by the inequality 
The set V ,  of the admissible values of the control element a is defined 

I07 



where the number y>O is chosen f rom considerations of a i rc raf t  stability 
and mechanical strength. 

Suppose that at the initial time t = O  the a i rc raf t  has known altitude, 
known velocity, and known mass, 

h(0 )  =ho; V ( 0 )  = VO; m(0)  =mo. (4.85) 

When at a given altitude hl> ho, the aircraft  is required t o  have a given 
velocity V I >  V O ,  i. e., 

V(t1) =VI.  (4.86) 

These boundary conditions define two s e t s  Vu(h=h,) and Vv(h,) of the 
admissible s ta tes  of the a i rc raf t  at altitudes h=ho and h=hl. Let u s  
determine the se t  vu(h) over the interval (ho, hi). 
of fuel consumed by the entire maneuver is sufficiently small, so that we 
may take 

We assume that the mass 

m=mo=const. (4.87) 

The angle (3 according to  the above is restrained t o  the l imi t s  O<B<n. 
The velocity v should satisfy the inequalities 

I/, (h),<V.\<V2(h), 

where the lower l imit  V l ( h )  is defined by the formula 

(4.88) 

(4.89) 

n 
V , ( h )  is the solution of equation (4.81) for a = k y ,  0 = 

condition V(h0) = VO. 
with the initial 

The upper l imit  is expressed by the equality 

VZ(h)=min [P, (h ) ,  K(h)]. (4.90) 

FIGURE 4.5 
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Here f 'z(h) is the solution of equation (4.81) for a= f y ,  0= 2 which passes  
2 

through the point hl ,  VI of the ( h ,  V )  plane (Figure 4.5). and Vz*(h)  is 
obtained f rom engineering considerations. Thus, considerations of 
mechanical strength demand that the dynamic head does not exceed some 
fixed value q : 

(4.91) 

The curves V=V1(h) and V = v ~ ( h )  are the projections of the "maximum 
braking" t ra jectory onto the (h,  V )  plane. 

attained for  vertical  ascent 0 = -  and maximum drag ( a =  fy). 

at an altitude h with velocity V ( h ) > V z ( h ) ,  say, will reach the altitude h l  
with velocity v ( h l )  > V I ,  thus violating the boundary condition V(h1) = V I .  

An element z of the se t  D of admissible t ra jector ies  is thus a com- 
bination of a piecewise-differentiable vector function y ( h )  = ( V ( h ) ,  B ( h ) )  
and a piecewise-continuous function a ( h )  defined on the segment [h,, h,], 
where they satisfy equations (4.81), (4.82) and conditions 

This ''maximum braking" is 

( 3 
Physically, the condition f ' , (h)  <V4<Vz(h) means that an a i rc raf t  moving 

(4.92) 

The las t  conditions are equivalent to  the boundary conditions (4.85), 

Among all the elements z D , find the one which minimizes the 
(4.86) and inequalities (4.80), (4.84), (4.88). 

functional 

I (z)='n,--m(h,)= (4.93) 

In other words, we a r e  looking for an admissible flight t ra jectory such 
that the ascent f r o m  altitude hd to  h ,  and acceleration from velocity 1/5 t o  
VI is effected with minimum expenditure of fuel. 

Before proceeding with a solution of the problem, we have to  make one 
fur ther  assumption concerning the properties of the' right-hand s ides  of 
equations (4.81), (4.82), which will fur ther  r e s t r i c t  the range of application 
of the problem but significantly simplify i t s  solution. We will assume that 
within the l imi t s  specified by (4.84), the drag coefficient may be treated 
as independent of the angle of attack: 

cx(M,  a)  = c! (M) f 6 (M) a2 = ( M ) .  (4.94) 

This assumption makes the problem degenerate (the control element a 
is now a l inear  component on the right in the relevant equations), and it 
can thus be solved by the special  methods described in Chapter 111. 

Thus following the general  outline for the solution of variational 
problems f rom the sufcicient optimum conditions, we introduce a function 
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cp(h, V ,  0) which depends on the argument h and the phase coordinates V 
and e .  We further construct the functions 

1 [Po+ Y (11, V, a)-mg cos 81 - - B(h.l. ')+SJh; (4.95) 
SSJR zzG V sin 0 

@ W 0 7  00. VI, 4 ) = Y ( h l ,  VI, fJd-SJ(h0, Vo. 80). 

We are looking for the vector functions (V(h) ,?  ( h ) ,  a ( h ) ) E  D and a 

(4.96) 
- 

function q(h ,  V ,  0)  such that 

o<o<r; 

Q (v0, Bo,  vl, ill  = inf (v0, v1, eo, el). (4.98) 
o<O.<n 
O<Bl<x 

In virtue of (4.75), (4,77), and (4.94), R is l inear in a .  We may thus use  
the method of multiple maxima in o rde r  t o  find q(h ,  I/, 0) .  
dependent of a ,  we should have 

If R is to  be in- 

'Ps (h ,  v, q = o .  (4.99) 

The general  solution of this equation is 

Y="(h ,  

where ql (h ,  V )  is an a rb i t r a ry  function of h and v . 
Inserting q=cp,(h, V )  in (4.95) and (4.96), we find 

(4.100) 

(4.101) 

Q V O ,  80, Vl, 4)=SJ1( /h ,  vd-P(h0 ,  Vo). (4.102) 

Condition (4.98) is now satisfied automatically for any (p, (hi V ) ,  since 
CD is independent of 00 and 81, whereas VO and are fixed. 

The function R is now indeed independent of a , i. e., any a maximizes 
th i s  function for fixed h, V ,  and 8 . We see f rom (4.101) that by imposing 
an additional condition on cp=q~ (h,  v), 

P-x (4.103) 'PlV 7- P = O ,  

we make R independent of 8 either. 
corresponds t o  a repeated application of the method of multiple maxima t o  
our problem, since 0 i n  Problem 2 is a control element. 

Condition (4.103) imposed on q l ( h ,  V )  
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From (4.103) we have 

V 

I, 

(4.104) 

(4.105) 

(4.106) 

The integral  in (4.105) and (4.106) is evaluated for  fixed h f rom an 
a rb i t r a ry  lower limit V O  . Inserting (4.104), (4.105), (4.106) in (4.1 O l ) ,  we 
find 

(4.107) 

The right- hand side of th i s  equality is a know function of h and V . 
Condition (4.97) for a maximum of R with the given cp defines the optimal 
dependence V ( h ) :  

R(h, V ( h ) ) =  sup  R ( h ,  VI. (4.108) 
V ,  ( h )  ( V < V 2 ( h )  

Here R(h ,  V )  is given by (4.107). 
It follows from (4.108) that the optimal flight program r ( h )  for  every 

fixed h either coincides with one of the l imit  values V,(h) or V,(h).  or is 
a solution of the equation 

Rv (h ,  V)= - - (4.109) 

or ,  finally, corresponds t o  a ver t ical  jump ( in  the ( h ,  V )  plane) f rom one 
of these V(h-0)  to  another r(h+O) corresponding t o  horizontal flight. The 
o r d e r  in which these pieces are "matched" is determined by equation 
(4.108), which fully descr ibes  the optimal program. 

FIGURE 4.6 

1 1 1  
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Let u s  now consider the engineering computations of the optimal 

1. 
powered ascent t ra jectory proceeding f rom (4.108). 

(4.81) for  the vertical  ascent ( 8=-  ) , which pass  through the points (ho, V O ) ,  

and (h l ,  V I ) ,  respectively. These solutions a r e  plotted in the (h ,  V )  plane. 
The curve of constant dynamic head q is plotted in the same plane, 

Numerical integration gives the solutions P'l(h) and P'z(h) of equation 

and using (4.88), (4.89) we construct the l imits  V l ( h )  and v ~ ( h )  of the ad- 
missible velocities. 

R(h, V )  on the segment [ v ~ ( h ) ,  v z ( h ) ] .  
by numerical  or graphical integration. 
function of this kind. 

F o r  every h , we choose a velocity v ( h )  corresponding to  the maximum 
value of R(h,  V )  over [ V l ( h ) ,  V z ( h ) ] .  A s  a rule ( see  Figure 4.6), the function 
R(h, V )  has two local maxima satisfying equation (4.109) (the subsonic and 
the supersonic extremals,  respectively); for h<h* (low altitudes), 
R{h, Vl(h)]>R[h, V " ( h ) ] ,  and for  h>h* (highaltitudes), R[h, Vl(h)]<R[h, Vl1(h)] .  
There may, however, be more  than two maxima. 

2. For every fixed h [ho, h,]  , we use (4.107) to  construct the function 
The integral in (4.107) is obtained 
Figure 4.6 shows a specimen 

3. 

FIGURE 4.1 

The optimal dependence V ( h )  corresponding to the function R ( h ,  V )  ob- 
tained in this case is shown in Figure 4.7 for the initial conditions ho=O, 
V,,=O. For  h<h*, 

V ( h )  = VI ( h )  , 

V ( h )  =min[Vl(h),  V2(h)]. 

This V ( h )  corresponds to the following flight conditions. The aircraf t  
first accelerates along a horizontal trajectory f rom V,=O to  some velocity 
V l ( 0 )  at the same altitude h=O (in practice, obviously, the flight altitude 

and for h>h*, 
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is somewhat higher). 
velocity V=VI(h) to the altitude h=h*, where Vl(h*) = VIi(h*).  At this 
altitude, the aircraf t  again assumes  a horizontal trajectory, accelerating 
f r o m  V1(h*)  to  Vii(h*), covering the entire sonic range of velocities. Then 
the aircraf t  cl imbs along the supersonic extremal  V 1 l ( h )  until the limit of 
the dynamic head constraint is reached. 
dynamic head q , again along the supersonic extremal, and finally 
accelerating in the horizontal direction at altitude hl t o  velocity vl. 
this trajectory may correspond, in the limit, to vertical  ascent of the a i r -  
craft. 

The aircraft  then climbs at the subsonic extremal 

After that it moves with constant 

A different optimal trajectory P(h)  is shown in Figure 4.8. Sections of 

FIGURE 4.8 

Inserting the optimal depe_ndence v ( h )  in (4.81), we find the co r re s -  

The kinks in v ( h )  correspond to discontinuities in B'(h). 
ponding optimal dependence 9 (h ) .  

Strictly speaking, 
this solution, although exact in the sense of Problem 2, does not exist in the 
original c lass  D ,  since the functions 9 ( h )  in this c lass  a r e  continuous. 

A solution which belongs to D can be obtained i f  the above solution of 
Problem 2 is replaced in the neighborhood of the discontinuity points by 
solutions of the original sys tem of differential equations with a =  +-y for the 
discontinuities where 9 increases  and with a=--y for the discontinuities 
where 9 decreases.  

The solution formed in this way should be treated a s  an approximate 
solution in D, with the estimate IIz--I*I, where 1 2  is the minimum value of 
the functional in Problem 2, I* is  the value of the functional for the new 
solution. Since I Z g i ,  where 1 is the exact minimum of the functional on D ,  
we have 

If the left-hand side of this inequality is sufficiently small, the right-hand 
side is also small, i. e., the approximate solution is sufficiently exact and no 
better approximation need be sought. 
does not satisfy the required accuracy, the above method cannot be applied in 
undiluted form to the solution of the particular problem, and it only provides a 

If the estimate 112--I*I is large and 
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qualitative description of the sought solution. 
be used, say, as the f i r s t  approximation in some successive approximations 
scheme whereby the solution is brought to  an end. 

V ( h )  minimizing the maneuver t ime 

In these cases, the resul t  may 

R e m  a r k  1. A similar procedure can be applied to  find a t ra jectory 

dh. 
1 

V sin 0 
(4.11 0) 

To this  end, 

R e m  a r k  2. 

P(h, V )  should be replaced with unity in expression (4.109) 
for  the function R(h, v). 
an a i rc raf t  considered in this  section played an important role  in the develop- 
ment of optimum flight theory. 
Lebedev / 6 /  in 1946. They obtained the subsonic extremal  V'(h), known a s  
Ostoslavskii 's curve. Miele 1121, by an ingenious application of Green ' s  
theorem, proved the optimality of t ra jector ies  containing one of the extremal  
branches and described the fundamental s t ructure  of the optimal t ra jectory 
in the case  of multiple extremals. The question of the optimal position of the 
"jumps" (the horizontal flight sections) between the different extremals  r e -  
mained open, however. A complete solution of the problem by the method 
described in this  section was finally published in 1 5 1 .  

The degenerate problem of the optimum powered ascent of 

It was f i r s t  tackled by Ostoslavskii and 

'S 4.5. APPROXIMATE SYNTHESIS O F  OPTIMAL 
ANGLE-OF-ATTACKCONTROLFORA 
LIQUID- PROPELLANT WINGED AIRCRAFT 

4. 5.1. Statement of the problem. Equations of motion 

The object of our analysis in th i s  section is a liquid-propellant winged 
a i rc raf t  normally flying in the dense layers  of the atmosphere, a t  altitudes 
up to  20 km. The motion of the aircraf t  is investigated in the wind system of 
coordinates under the following basic assumptions. 

The a i rc raf t  motion is considered in a ver t ical  plane in the atmo- 
sphere  of a non-rotating Ear th  with a homogeneous gravitational field. 

The a i rc raf t  is treated as a point of varying mass, since liquid- 
propellant engines a r e  characterized by high r a t e s  of fuel consumption. 

Since the engine thrust  is assumed to  remain constant, the a i rc raf t  
motion is entirely determined by controlling the angle of attack of the 
wings. 

of constant engine thrust  is independent of flight velocity and flight altitude 
161 ,  i. e., the ai rcraf t  m a s s  is a known function of time. 

along the longitudinal axis  of the aircraf t .  

1. 

2. 

3.  

4. The per-second consumption of the liquid propellant under conditions 

5. The engine thrust  is constant, and the direction of the thrust  vector is 
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6. The polar curve of the a i rc raf t  is a family of quadratic parabolas 
of the f o r m  

I c,= cx0 (M) f c (M) a*; 
cy= A (M)R, (4.111) 

where c, is the drag coefficient, cXo is the component of the drag coefficient 
f o r  ze ro  angle of attack, 
coupling, a is the angle of attack, M is the Mach number. 

The functions cxo=f(M);  c = f ( M ) ;  A = f ( M )  are represented as polynomials 
in M. 

7. 
stationary conditions. 

8. 
we may therefore take 

c is a coefficient which allows for  the lift-drag 

The aerodynamic forces  on the a i rc raf t  are  determined assuming 

The l imits of variation of the angle of attack are sufficiently small and 

a2 

2 
s i n a z a ;  c o s a z  1 -- . 

The equations of motion of an a i rc raf t  in the wind system of coordinates 
under the above assumptions take the form 

(4.112) 

(4.113) 

h =V sin 8 ,  (4.114) 

where V is the flight velocity in km/sec,  h is the flight altitude in km, 0 is 
the angle of inclination of the flight trajectory to  the horizon in rad, Pis  the 
engine thrust, 
Y ( h ,  V ) a  are, respectively, the induced drag and the lift. 

are described by the following relations: 

1 
m 

v=- [ P  - X o ( V , h ) - ( 0 . 5 P  +X,(V,h))a*-  mgsine];  

I e = -  V m  { [P+Y(V,/z) ]  a-mgcos e ] ;  

Xo(V, h )  is the drag for ze ro  angle of attack, X i ( V ,  h)a2 and 

The atmospheric density and the speed of sound as a function of altitude 

~ ( h ) = 0 . 3 4 0  v 1 -0.02255h . 

( f o r  h >  11 km). 

20-h Q=0.125 ___ * 
2 0 + h  ' 

h 

~ = 0 . 2 1 0 5 e - ~ ~ ;  a(h)=0.295 

In what follows a is considered as a control element, with the following 
inequality constraints:  

a, <a<az. (4.1 1 5 )  

- We will construct an optimal synthesis of the angle of attack a(& y) = 
= a  ( t ,  h, V ,  0) whichmoves any point of the space ( t ,  h, V ,  0)  into a point tlf, hlf ,  elf, 

VI with the maximum velocity VI. 
Here tlf=lOOsec, h l f=  19,00Om, €llf=0.174rad. 
This is clear ly  the dual problem of the problem of minimum time (or 

minimum fuel consumption, since the dependence m(t )  for reaching the point 
t l ,  h~f ,  0 I f ,  Vlf is known). 
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Instead of a problem with a fixed right end point, we will consider a 
problem with a f ree  right end point for  the functional 

3 

/=K+Ch(Y:-y:f)2, (4.11 6) 
1-2 

where hp, 3 a r e  some positive constants. 

4. 5.2. Changing over to new coordinates. Descrrption of V,(t) 

The se t  vu(t) is defined a s  a parallelepiped in the y space, described by 
the following inequalities: 

where - 
V = 0.00C066t2 + 0.0027t; 

- 
e=0.0002163t~-o0.o3875t+ 1.92; 

(4.11 6a)  

(4.11 7) 

(4.1 18) 

h= 0.0013t2 + 0.048245; (4.1 19) 

y=0.2km/sec; ~=0 .1  rad ;  x=lkm. 

This definition of v,(t) is dictated by tentative est imates  of that region of 
the (t, y) space where the optimal t ra jector ies  corresponding t o  the sought 
synthesis l ie (we do not intend to  consider this  problem in any detail here).  

the transformations 
Given this region vu(t), we can change over to  new coordinates ( t ,  z )  using 

y'=? ( t )  f zl, (4.120) 

where ( t )  a r e  defined by (4.117)-(4.119). 
The equations of motion thus take the form 

i l = f l ( t ,  z,a)=- 1 ( P - ~ , ( i 7 + z 1 ,  h+23)- 

m (0 
- [0.5P + X, (v + zI, hf z3)] a* - mg sin (8+ 9)) - 0.000132t - 0.0027; (4.12 1 ) 

- mg cos (e+z2)] - O.OO04326t + 0.03875; (4.122) 

i3 = f 3 ( f ,  z, a) = (v+ zl) sin (r+.") - 0.0026t - 0.04824. (4.123) 
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4. 5. 3. Solution of the problem 

By applying the method of Chapter 111, we reduce the solution of the 
problem t o  finding a function q( t ,  z )  which satisfies the following conditions 
of an absolute maximum of the functional:" 

P(f,z)= inf j?((r,z,a)= inf ['7zf(t,z,a)+cp(t)]=c(t); (4.124) 

(4.125) 
06 I= I .%I =€11,. % I  

@ (t,,z,)= z* + E l l  (2: + zfJ +cp(tl,zl)= const, 

in other words, we have t o  solve the Cauchy problem for  a f i rs t -order  non- 
l inear partial  differential equation. 

therefore use the approximate method of optimal synthesis described in 
S 2. 3. 

N o  exact solution of th i s  problem can be obtained in general. 

The function 'p is sought in the fo rm of a polynomial 

We will 

(4.126) 

with unknown coefficients $ I , I ~ I ~  ( t ) .  There is a total  of 27 coefficients here.  
We further demand that conditions (4.124), (4.125) be satisfied for all t at 
2 7  specially constructed reference points in V,(t)  (and definitely not every- 
where in  this region), which a r e  obtained by combining the following values 
of the variables 2': 

21: 0, y' 

23: - x ,  0, + x .  

2 2 :  - E ,  0, +q (4.127) 

In this case the reference curves - the loci of reference points - are 

The function R may be represented in the following form, which is par- 
parallel  straight lines zp =const, p= I ,  2, . . . , 27,  in the (f, z )  space. 

ticularly convenient for minimization with respect t o  a : 

R= Aa2 + Ba + C+ y l ,  (4.128) 

where 
(4.129) 1 P A= -yzl [0.5 ;+xi(!, 1/+z1, h+23) ; 

(4.130) 

~ = c p , x  [$ - X ,  (t, v +z1,h+ 23)- g sin(C+zz)- 

- 0.000132t- 0.0027 - g 'Os (T+r*) + 1 '74 B+Z' 
+0.000432f- 0.038751 + 'pz3[(r+z1) sin (e'+&!) - 0.0026t - 0.048241; (4.13 1) 

yz1and qt a r e  partial  derivatives of the polynomial (4.126) which, after ex- 
pansion of the parentheses and transit ion t o  a continuous numeration of the 
unknowns, take the form 

* In maximizing the functional, thecondition of maximum of R in Theorem 1.1 is replaced by a condition 
of minimum. 
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Minimization of the quadratic tr inomial (4.128) in a under the above 
constraints on a gives the following results,  which depend on the value of 
the tr inomial coefficients: 

P (f, z)=infR(t ,  zI a)=%(/,  z )+y( t ) ,  (4.133) 

where for  A > 0,  

for  A < 0, 

Z=Aa:+Ba,+C a=a,; 

Z=Aaq+Ba, + C  a=a2, 

( 4.1 3 4) 

(4.135) 

and the coefficients A, B, c are obtained from (4.129) - (4.131). 

the relations 
Since (4.124)must be satisfied on the reference lines zp, we obtain 

ytp=-%'p(P=l, 2, . . . , 27), ( 4.13 6 )  

which constitute a system of f i r s t -  order  nonlinear ordinary difSerentia1 
equations. 
derivatives enter  the equations in l inear form. 
may write (4.136) in the f o r m  

These equations a r e  not solved for the derivatives + p ,  but these 
Using matr ix  notation, we 

A h  = - %, (4.137) 

where A is the matr ix  of the system coefficients, Zp is the column vector of 
the f r ee  terms,  qP is the column vector whose elements are the unknowns. 

zp =const  is obtained without considerable difficulty, since the elements of the 
direct  coefficient matr ix  A a r e  constant .at any t ime tc (to, fl). 
solution, we f i r s t  solve the system for I$, 

The solution of the above system of equations with the reference lines 

To obtain the 

9 = - - - I% (4.138) 

and since the elements of the direct  coefficient matrix A are constant at any 
time, the inverse matrix A-' should be determined only at the very beginning 
when solving (4.137). 
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The initial conditions for ~ $ p  (p=1, 2, ..., 27) a t  time t= f l  are obtained 
f r o m  (4.125): 

~ ( f , ,  Z ~ ) = Z ~ + ) \ ~ ( ~ ~ - Z ~ ) ~ + ~ ~ ( ~ - Z : ) ~ +  y(t l ,  z:, z;, z;)=c, (4.139) 

o r  

(4.142) 
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It follows f rom (4.141) - (4.143) that at  t ime f = f l  the functions $p ( t , )  should 
take on the values - 

= - k I  (2y - A*(zy, q12 = 1, q13 = 24 z;, 

9,=2i22;, q6= -L1, q17= -12, (4.144) 

-Q - - Q  = + g = .  . . - -h =o. 
15- * a .  I 27 

Here A ,  and hz are some positive numbers, which are sufficiently large in 

The solution of sys t em (4.136) with the above boundary conditions gives 
our  sense.  

the unknown coefficients $j(f) of the polynomial (4.126) and thus determines 
the sought approximate expression of the function cp,- i t s  derivatives, and 
finally ( f rom (4.134) and (4.135)) the expression for a( t ,  z ) .  

equation 
Simultaneously with the integration of (4.136), we can integrate the 

A = s u p ~ ( t ,  z)-iinfP(t, 2) 
VY VY 

with the initial condition A(t1) = O .  
approximate synthesis at the initial t ime. 

This gives an estimate A of the 

(4.145) 

4. 5.4.  A scheme for a computer 

The problem was solved on the BESM-2 computer. The special  program 
used in this case consists of two parts:  the direct  program, which solves the 
sys t em of ordinary differential equations (4.136) and determines the e r r o r  
in the direction f rom f l =  100 sec to  to= 30 sec,  and the inverse program, 
which is used to construct the optimal trajectory for a cer ta in  characterist ic 
combination of initial conditions. 

corresponding optimal program fo r  the angle of attack a ( t )  are shown in 
Figures  4.9 through 4.13. 
v(fo) =0.139km/sec,  e ( @  =1.115rad, h=2.7km(z1=z2=z3=O). 

The e r r o r  of the method, the optimal t ra jectory con_structed, and the 

The following initial conditions were use: L,=30 sec, 

FIGURE 4.9 
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Chapter V 

O P T I M A L  P R O B L E M S  IN T H E  DYNAMICS 
OF COASTING IN T H E  ATMOSPHERE 

The present chapter deals with the general variational problem of the 
dynamics of two-dimensional (plane) motion in the atmosphere of a winged 
a i rc ra i t  with controllable aerodynamic lift; constraints on the coordinates 
and the control element a r e  taken into consideration. 
typical case  when the sought optimal control is degenerate (the case  of 
sliding control). 
a r e  equal in magnitude, the analysis of the sliding control reduces to  
minimizing an integral functional without differential constraints. 
resul ts  of this analysis are then applied to  solve the problem of the optimal 
descent of an aircraf t  in the atmosphere with minimum added integral heat 
in the cr i t ical  zone of the aircraf t .  
scribed in Chapter I11 is used. 

We will analyze a 

It is shown that i f  the limit values of the control function 

The 

The method of multiple maxima de- 

5 5. 1. OPTILTAL TWO-DIhlENSIONAL COASTING 
OF WINGED AIRCRAFT IN T H E  ATMOS- 
SPHERE IGNORING RANGE 

5.1. 1. Statement of the problem 

We will consider the motion of a winged aircraf t ,  with i t s  engines 
cut off, in the atmosphere of a spherical  non-rotating Ear th  under the 
following conditions: 

1) equations of motion of the center of mass  of the aircraf t :  

h = V s i n O ;  (5.1) 

V =  - X ( h ,  V ,  c,)--sine; (5.2) 

( 5 . 3 )  
1 v2 

V 
e=-[u(/2, v, cy) f 

2 )  boundary conditions 
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3)  constraints,  for t c  (0, f l ) ,  

Here h, V ,  8 a r e  respectively the altitude, the velocity, and the in- 
clination of the a i rc raf t  trajectory (the phase coordinates); cy is the lift 
coefficient of the a i rc raf t  ( a  control element); Y(h ,  v, Cy), x(h, v, Cy) a r e  
the lift and the drag per unit m a s s  of the aircraf t ;  g is the gravitational 
acceleration; rE i s  the Ea r th ' s  radius. 

The functions X ( h ,  V ,  cy) ,  Y(h ,  v, C u )  a r e  assumed to be described by the 
ordinary equations of stationary aerodynamics: 

Equations (5.1 ) - ( 5 . 3 )  a r e  considered ignoring the horizontal flight range. 

SR eV2 Y (h,  v, cy) =- - c G 2  

where e is the density of the atmosphere, S is the characterist ic area,  G i s  
the aircraf t  weight; for every fixed h and V ,  b (h ,  V ,  cy) i s  a symmetrical  
concave function of Cy.  

with altitude is ignored. The las t  assumption, like the neglect of the Ea r th ' s  
nonsphericity and i ts  spin, introduce very slight e r r o r s  in the computation 
results,  and yet greatly simplify the mathematics. These effects can always 
be restored in full without any modification of the basic mathematical 
apparatus. 
traction is also ignored. The functions h ( t ) ,  V(t) ,o(f)are  continuous and 
piecewise-differentiable, cy(f) is a bounded piecewise-continuous function. 
These assumptions a r e  commonly used in variational problems of flight 
dynamics. 

satisfying the various conditions and assumptions. 

programs 

The variation of the gravitational acceleration g 

The change in a i rcraf t  mass  associated with possible heat sub- 

Let D be the set  of the admissible motion programs h ( t ) ,  V ( t ) ,  O ( t ) ,  cl , ( t )  

Our problem can be stated a s  follows. Find a sequence of motion 

on which the functional 

(5.7) 

goes to i ts  least  value over the se t  D. 
The form of the functional (5.7), the constraints (5.5), and the boundary 

conditions (5.4) depend on the particular problem being considered. 
wi l l  be improved and adjusted when necessary.  Without loss of generality, 
we may take cYl<cup. 

They 
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5. 1. 2. Analysis of the optimum conditions 

We will now investigate the function r2 for  the given system comprising 
the functional and the constraints, 

R= yhV sin e -yV (X (h, V, cy)+g sin e)+ 

If the function c p ( t  It, V ,  8 )  is given, the function R for  some fixed t, h, V ,  8 
will depend on cy only, and i t s  character ,  in virtue of the propert ies  of the 
functions x(h, v, Cy) and y ( h ,  v, Cy). will be determined pr imari ly  by the 
magnitude and the signs of the coefficients of rpv and rpe. Suppose that the 
following conditions a r e  observed in some region of the (t, h, V ,  8 )  space: 

As  is readily seen, R attains a maximum for two values of cy,  namely 
cv l ( t ,  h, V )  and cy2(t,h, V ) .  
relevant region and satisfies conditions (5.9), (5.10), i t  constitutes 
degenerate (sliding) control with degeneracy k of a t  least  1. 
(5.9), (5.1 0) a r e  not satisfied, the maximum of 8 is attained only on one 
cy,  ei ther  inside the segment [cy,, cUz] or at one of the end points cyl, cy2. 

The corresponding optimum control is of Euler type in the former  case  
and of boundary type inthe la t ter .  We only investigate the conditions 
corresponding to degenerate programs since, first,  a s  we shall see f rom 
what follows, they a r e  quite typical of the problems being considered, and, 
second, Euler  and boundary optimal controls have been widely t reated 
in the l i t e ra ture  1 2  - 51. 

maxima), we will find the general solution of the partial differential 
equation (5.10). 
integral of the system 

If the sought optimal program belongs to  the 

If conditions 

Following the scheme described in Chapter I11 (the method of multiple 

To this end, we f i r s t  determine the independent f i r s t  

where 

(5 .12 )  

( 5 . 1 3 )  

(5.14) 

(5.15) 

(5.16) 
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The general  solution of equation (5.10) is an a rb i t ra ry  continuous and 
differentiable function 

'P='P1(t, h ,  E(t, 8 ,  h,  V)). (5.17) 

Inserting this  function in expression (5.8) for  R ,  we find 

o r  

(5.18) 

(5.19) 

where V and 0 a r e  related by (5.13) 

V and 0 a r e  the control e lements  (they a r e  related by (5.13)). 
we can eliminate 0 .  
h, E and V ,  with V acting as a control element. 

any useful purpose. 
Problem 2 and minimize the functional (5.7) with the following differential 
constraints: 

Here h, 8 a r e  the phase coordinates (the arguments of the functionql) and 
Using (5.13), 

The function RI for every fixed f will then depend on 

Further  investigation of the function R1 in general  form does not achieve 
One of the ways for  fur ther  solution is to change over  to  

iz=Vsine; (5.20) 

As  we could have expected, this  problem is s impler  than the original 
problem since the o rde r  of sys tem (5.20), (5.21) is 1 less than the o rde r  of 
(5.1) -(5.3). 

Problem 2 can be solved by the method of approximate optimal synthesis 
(see S 2.3). This method can be applied directly to  the original problem (if  
the constraints on the phase coordinates are sufficiently simple), but i t  in- 
volves integration of a system of  differential equations of order  m f n  where 
n is the order  of the sys tem of constraints, and m is the degree of the 
approximating polynomial. Therefore, even if  the o rde r  n is lowered by 1 
only, the resul t  is a substantial reduction of the overall computational work. 
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Once Problem 2 has  been solved, we have to check the applicability of 
conditions (5.4), (5.5) and establish that the solution indeed-belon_gs to_the 
angle o(t) .  
the equation 

The la t te r  is verified by inserting the solution h ( t ) ,  V ( t ) ,  0 ( t )  in 

(5.22) 

which is then solved for  v .  
solution of Problem 2 defines the zero  closeness function of the sliding 
control. The original problem is thus solved. Otherwise, a s  we have seen 
before, the function cp is constructed by a different method. 
this  case  the solution of Problem 2 does not solve Problem 1, it nevertheless 
provides some information concerning the type of the sought solution. 
this  information, we can construct a reference solution which is subsequently 
improved by some scheme of successive approximations, e. g., by the 
method of approximate optimal synthesis for the original problem. A 
clever choice of the reference trajectory reduces the region in which the 
optimal synthesis is constructed and thus lowers  the degree of the 
approximating polynomial. As  before, this  leads to  a marked reduction in 
the volume of computations. 

If all the above conditions are satisfied, the 

Although in 

Using 

5. 1. 3. A special case of a symmetr ic  constraint on 
the l i f t  coefficient 

Let 

In this important case, the analysis of our general  problem can be 
continued much further. Since the function X ( h ,  v, cy) i s  symmetrical, we 
have 

x(h, v, c,,)=X(h, v, C"21, 

and condition (5.10) takes the form cpo = O .  
is independent of 0 .  

This means that the function cp 
The function R1 takes the form 

It follows f rom the s t ructure  of cpl and R I  that sin 8 is the ccntrol element 
in this case: i t  en te rs  the expression for  RI  in l inear  form. Problem 2, in 
i t s  turn, is degenerate and i t  can be solved by the method of multiple 
maxima. 
identically vanishes, 

We define cpl(f, h, v) so that the coefficient before sin 0 in (5.24) 

'PlhV -yJ1vg=O. (5.25) 
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The general  solution of the partial differential equation (5.25) is an 
a rb i t r a ry  continuous and differentiable function 

where 

is the independent f i r s t  integral of the system 

d h  
dr 
-=v; 
dV 
dr  
-= --g. J 

(5.26) 

(5.27) 

(5.28) 

Inserting this  solution in the expression for  R1, we find 

where h, V ,  and q satisfy (5.27). In (5.29), q is the phase coordinate, and 
h and v a r e  the control elements (they a r e  related to  r) by (5 .27 ) ) .  
change over  to  one independent control element, h say, by expressing V 
f rom (5.27) in t e r m s  of 11 and h : 

We can 

v=v-. 
As in the general  case, it is better a t  this  stage to  pass  to a modified 

problem (we call it Problem 3) minimizing the functional (5.7) with a single 
differential constraint 

where h, V ,  0 satisfy (5.27). 
optimal synthesis, which in the present case  virtually reduces to integrating 
a sys tem of f i r s t -order  ordinary differential equations where the number of 
equations is equal to  the degree of the approximating polynomial plus 1 
(one-dimensional synthesis). 

equations of PZob1e-m 2 Ln order  to  obtain s in  8 .  
constraints, ( h ( t ) ,  V ( t ) ,  e ( t ) )  is a solution of Problem 2. 
solution as before. 

In practice, the constraints on cy and the phase coordinates in problems 
of this kind are generally determined by physical constraints on overloading, 
temperature ,  etc., which depend on the flight altitude and velocity and are 
independent of time. In numerous problems the final time t ,  is not given 
(e .  g., the problem of the minimum added heat in the cr i t ical  zone, which is 
considered below). In this case, the right-hand side of equation (5.30) is 
time-independent. 

Problem 3 can be solved by approximate 

The resulting solution ( h ( t ) ,  c ( t ) )  of Problem 3 should be inserted in the 
If the result sat isf ies  the 

We t rea t  this  

Using this fact and fur ther  remembering that any 
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physically admissible motion of the aircraf t  with the engine cut off,. de-  
scr ibed by equations ( 5 . 1 )  - (5 .3 ) ,  is constrained by the inequality q Q O  
(the total energy of the a i rc raf t  cannot increase with time), we may change 
over  f rom t t o  a new independent variable q, without distorting the physics 
of the problem. 
minimizing the functional 

Problem 3 is thus finally reduced to  the problem of 

where 

v=v 2g (V - h) ,  

without differential constraints and with inequality constraints of the fo rm 
( 5 . 5 )  imposed on the f r ee  functions h ( q ) ,  cy(q)  and on the parameters  80 
and 81; in other words, the general  problem is reduced to  an elementary 
problem of the absolute minimum of a function of a single variable fo r  every 
fixed q. 
Problem 3 then coincides with the solution of the equations 

Let f y  (q, h, cy) denote the integrand in ( 5 . 3 1 ) .  The solution of 

~ Y ( v ,  E(r7),Ty(h, ~ ) ) = i n f A ( r l ,  h, cy), v ~ ( 1 1 ~ ~  qo); ( 5 . 3 2 )  
h E B ('1) 
icy1 .( cy l im(h*  1) 

I qz vo (KO, VO), G TI, v, ( T I ,  VI),  e l ) =  

= inf @o, vo (/IO> qo), 00, h, (4, VI),  0 J ,  (5 .33 )  
( h o .  8,) E Bo 
( ~ , . B , ) E B ,  

where B(q) ,  Bo, B ,  a r e  the regions of the admissible values of h, ea, 01 defined 
by conditions (5 .5 ) ,  or  the regions of those h, 00, 81 which a r e  actually 
attainable for  system ( 5 . 1 ) - ( 5 . 3 )  under conditions (5 .4 ) ,  ( 5 . 5 ) .  

Although the solution of Problem 3 is elementary, we have to  consider 
i t s  existence in the se t  D. The s t ructure  of the functional in Problem 3 is 
so simple that i t  permits  drawing some important conclusions concerning 
the feasibility of the solution of this problem. 
maximum of the integrand in ( 5 . 3 1 )  with respec t  to  cy for  any admissible 
fixed q and h .  
only on the sign of the function f y  (h, q, cy).  
optimal value of cy, C; = O .  
different values of Cy, 

Indeed, le t  us  find the 

Note that the corresponding optimal value c i  (q, h )  depends 

If f930, the minimum of f y  is attained for  two 
If f y  <0, there  is only one 

c i = t c g l i m  (h, q). 

In the negative case, the substitution cy=c', in the original sys tem deter-  
mines, in combination with the initial conditions, the unique solution of 
sys tem (5 .1 )  - (5 .3) ,  i. e., a ballistic t ra jectory which does not necessar i ly  
coincide with the solution ( z (q ) ,  8(q), 6(q)) obtained under completely 
different conditions. 
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In the positive case, the solution of Problem 3 does not necessar i ly  
sat isfy equations (5.1)-(5.3) for  c,,=c~/. 
on s in  e and to  lie within the angle o constructed at  each point of the 
trajectory. 
a succession of control functions, each comprising alternating flight sections 
with maximum and minimum angle of attack. 

The  denominator of the integrand in (5.31) for  any values of the arguments 
is definite positive, so  that the sign of the fraction f y  coincides with the sign 
of the numerator, i. e., i t  is determined entirely by the particular fo rm of 
the function fo(h, V )  (the given optimality criterion). Thus, if fo(h, V)= 1 
(the problem of minimum descent time), the solution of Problem 3 is indeed 
feasible. 

If, on the other hand, fo(h,  V )  =-I (the problem of maximum lifetime), 
the solution of Problem 3, s t r ic t ly  speaking, does not exist in D and an 
alternative method has  to be used. 

in that region of the (h, V )  space where fo(h, V)>O. 

It only has  to  satisfy the constraints 

In this  case the solution can be realized by a sliding program - 

If fo(h, V )  changes i ts  sign, the solution of Problem 3 is s t r ic t ly  feasible 

5. 1. 4. Generalization to  the case of additional 
control elements 

The preceding resu l t s  a r e  generalized without much difficulty to  the case  
when the angle of attack cy is not the only control element: other common 
control elements a r e  the angle of bank y and the drag  coefficient c,~. 
practice, cxo can be controlled with the aid of braking apparatus in the form 
of skir ts ,  flaps or air brakes, and parachutes. 

over  the se t  D of flight programs satisfying the following conditions. 

In 

Let u s  consider the previous problem of minimizing the functional (5.7) 

1. The equations of motion 

h=V sin 0; (5.34) 

V =  - X ( h ,  V, cx,, c,)-gsin e ;  (5.35) 

(5.36) 
1 b=v[v(h,  V, c,)cosy+ 

where h, I/, 8 are the phase coordinates; cy, y, C,O a r e  the control elements. 
2.  Boundary conditions (5.5), with f ree  end t ime t l .  
3. Constraints, for  t (0, t , ) ,  

(5.37) 

The angle of bank y is ei ther  not constrained (-1 <COS yQ 3. l ) ,  i. e., 
equations (5.34) -(5.36) a r e  in fact the projections of the three-dimensional 
equations of motion on the ver t ical  plane, or takes on the values 0 and n: 
(cosy=&-1) only, i. e., the a i rcraf t  is t ruly constrained to  perform two- 
dimensional (or almost  two-dimensional) motion. 
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We will accept all the assumptions listed in 5. 1. 1. 
Note that owing to  the presence of the additional control element y ,  we 

may t rea t  the product Y(h, V ,  c,)cosy as an independent l inear  control 
element Y, which assumes values inside the interval 

where Yalimmay depend on h and v. 
The function l? takes the form 

R=cp,Vsin0-cpv[X(h, V, cxo,c~)+gsin8]+cp~ 

Successively applying the method of multiple maxima and changing over  
t o  a new argument, we end up, as before, with Problem 3 minimizing the 
functional 

f ~ = - ~ + v , c x " , c y )  f o ( h l V )  d ' l f F ( h 0 ,  vo, Bo, h,, VI, B,), ( 5 . 3 9 )  

' lo 

where 

v = l / 2 g  (71 -h ) .  

For every 9 (I!, qo), the solution n ( q ) ,  E X o ( q ) ,  FV(q)  of Problem 3 is de- 
fined by the condition 

(5.40) 
I 

f! PI, X PI), LJI), cy (71)) = inf j ? ~ ,  11, cx,, cy), 
h € B ,  ('1) 

C y ) E Q n ( h . T )  

where f :  (q, h, cxo, cu)  is the integrand in (5.39). 
q 
minimum of the function f y  (q, h, cI0, cy) with respect to all the three in- 
dependent variables h, cSo, c y .  

Owing to  the additional control element y , the transition to  Problem 3 
does not require  any assumptions concerning equal l imi t s  of variation of 
the angle of attack. 
when c",(q) is unique, provided that Cl,(q) f O .  

then some function Ya (q) and the corresponding "required" value (COS y ) r .  
If I (cos y) I I -< 1 and the solution ( E  (q) ,  tl (q)  ) satisfies the boundary conditions, 
we have solved the original problem. If the angle y is not constrained, 
we m_ay take cos y I (cos v ) ~ .  
E ( q ) ,  O ( q )  may be approximated in D by constructing a sliding program with 
the basis control functions (CXo(q) ,  F, (q ) ,  cosy!, z ) ,  where c o s y ! = -  1, COS yz=+ 1. 

In other words, for every 
(q1, q o ) ,  the values of E ,  FXo, c", a r e  obtained as the point of absolute 

In general, the solution of Problem 3 exists in D 

Indeed, inserting E ,  E,, F,o in the initial conditions, we find %(q) and 

If cos y is constrained to  the two values f 1, 
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9 5.2.  OPTIMAL DESCENT PROGRAM OF AN AIRCRAFT 
IN THE ATMOSPHERE BASED ON THE CONDITION 
OF MINIMUM ADDED INTEGRAL HEAT IN THE 
CRITICAL ZONE 

5. 2. 1. Statement of the problem 

Consider the problem of a i rc raf t  descent in the atmosphere with minimum 
added heat in the cri t ical  zone, 
functional 

The added heat is estimated by the 

where K ,  is a constant. 
The admissible motion programs satisfy the following conditions. 
The equations of motion 

(5.41) 

(5.42) 
(5.43) 

(5.44) 

where 

Ya = Y (h ,  V, f,) cos 1'. 

Boundary conditions: 
A1 t e r n a t i v e 1. Only the initial and the final energy levels are given: 

(5.45) 

(transit ion from one energy level to another). 
A 1 t e r n a t i v  e 2.  

final value of the energy level are given: 
The initial values of the phase coordinates and the 

t= 0, h (0) v (0) = vof: 0 (o)= oaf; 71, = vIf .  (5.46) 

In both alternatives, t ,  is f ree .  

constraints: 
The sought optimal program is expected to satisfy the following 
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Inequality (5.47) is an engineering constraint on the l i f t  coefficient; Cylim 
In (5.48) h l i m  is the geometrical  altitude may be identified with Cvni l ,  say. 

limit, i. e., the ground level. 
on the total overload N and the heat flux qt  at  some crit ical  point on the 
aircraf t  surface. The l imit  values of these pa rame te r s  a r e  fixed f r o m  
structural  strength considerations and f rom safety requirements f o r  the 
c rew and the instrumentation. It is assumed that for any fixed h and V ,  
q t ( h ,  V,  cv) is a symmetrical  and monotonic (on both sides of the origin) 
function of Cy. 

From considerations of problem solution, constrainsts (5.49). (5.50) 
are better written in the fo rm (5.5). 
h, V have a minimum for c,=O. 

Relations (5.49), (5.50) impose constraints 

Note that both and qt for any fixed 

Condition (5.49) is then equivalent to the following two inequalities: 

(5.51) 

(5.52) 

where cf(h, V )  is the positive solution of the equation 

W ( h ,  v, cu)=N;im (5.53) 

for  any fixed h and V which satisfy (5.51). 
solution Cfi does not exist. 

Clearly, for other h, V ,  the 

Condition (5.50) is similarly equivalent to the following inequalities: 

(5.54) 

(5.55) 

where c;(h, V )  is the positive solution of the equation 

(It (h ,  V, Cu)=(Jt.lim* (5.56) 

The functions ( N 2 ( h ,  V ) ) c y - ~  and (q t  (h, V)),,-O decrease monotonically 
with increasing altitude and increase monotonically with increasing velocity. - 
Therefore (5.51) may be written in the form 

h > h' (V), (5.57) 

Pt ' P t lim 

V 

FIGURE 5.1 
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where h*(V) is the solution of the equation 

(5.58) 

for  any fixed v, and (5.54) may be written in the form 

h h" (V) ,  (5.59) 

where h**(V) is the solution of the equation 

(4t (h, V))cu- 0 = 4t.lim (5.60) 

f o r  any fixed v. 
Summing up, we can wr i t e  the various constraints in the following form 

(Figure 5.1): 

hlym. for hl,>h', ha* 
h >/ hb(V)= h ' (V)  fo r  h* > hlLm, h'* (5.61) 

[h**(V) for h">hli,, h* 
cull& fo r  culi;<ci, cf' 
c i  (h ,  1') fo r  C; < culii, c:* (5.62) 
C:*(h, V )  fo r  CY< Cglim, Ci 

-Y (h ,  V, C y b ) < y Y , , < Y  (h ,  v, cub), (5.63) 

and in this fo rm they will be used in what follows. 

classification a r e  of no consequence from the point of view of the method 
of problem solution. 
of constraints, which distinguishes between constraints on the phase 
coordinates (group (5.61)) and constraints on the control elements depending 
on the phase coordinates (group (5.62)). 

We can now present a rigorous formulation of the problem, denoting by 
D the se t  of admissible motion programs satisfying the above conditions: 

Find a sequence of programs ( ( & ( t ) ,  v s ( t ) ,  G( t ) ,  zus(f), y s ( t ) ) ) c D  on 
which the functional (5.41) goes to its leas t  value over the se t  D. 

Note that the physical meaning of the constraints and the corresponding 

We a r e  merely concerned with the formal  classification 

5. 2. 2. Solution of the problem 

Seeing that the t ime t l  is f ree  and constraints (5.61) - (5.63) do not depend 
explicitly on time, we will solve Problem 3 corresponding to the original 
problem. We thus minimize the functional 

(5.64) 
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where 

under constraints (5 .61 ) ,  (5 .62 ) .  The minimum of the functional (5 .64 )  
yields a certain solution z(q), c",(q) on which, for every fixed q 
the integrand in (5 .64 )  attains i t s  minimum under the same constraints. 

fixed q and h is attained for l C y l  = C,b (h, q) . 
( 5 . 6 4 )  and find the minimum of the function 

(111, qo), 

Since in our case fo(h,  V)>O, the minimum of the integrand f o r  any 
We now inser t  lCyl =C,b in 

(5 .65 )  

on the set  h>hb(q). 
transforming h b ( V )  to the new coordinates (see 
Figure 5.1). 

Figure 5.2 shows some typical curves  of the 
function x ( h )  for several  fixed values of q. 
minimum of x ( h )  is attained at the kink point zopt ,  
which is precisely the point of transition from 

Here h b ( q )  is obtained by 
l=const 

The 
v 

I 
h 

FIGURE 52 one Cy, Culim, to another Cf or C Y .  
this is the point where 

In other words, 

The solution of Problem 3 for  the two alternative se t s  of boundary 

A l t e r n a t i v e  1. 
conditions thus has the following form (Figure 5 .3 ) .  

( 5 . 6 6 )  

FIGURE 5.3 
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A l t e r n a t i v e  2. 

(5.67) 

For  both alternatives, 

We  will now consider the existence of the solution of Problem 3 in D ,  

In equations (5.42)-(5.44) we change over to  a new argument q: 
i. e., the actual construction of the sought minimizing solution. 

(5.68) 

(5.69) 

The solution of Problem 3 is feasible in D only if the direction (1, @(q), - 
h ( q ) )  in the ( h ,  8, q) space, for every q, lies within the angle o spanned by 

the vectors 

~ l = L 1 9  f ( q 9  T F, cy1im)I 

and 

a2 =[ l ,  f ( r l ,  z, i j: -Cyl, 
where f = ( f ’ ,  f 2 ) .  

In other words, the substitution of 8’(q) in the equation 

- -  
ef(rl)=vf2(q, i;, T, -cllliA+(i-v)f2(tl, h,  ~+c,,~,) (5.70) 

should give Y which satisfies the constraints O<v<l. 

values of E’, 8’ a t  the discontinuity points a r e  not bounded, and the direction 
[ I ,  E’, @] therefore a pr ior i  does not lie within the angle o since the functions 
f2(h, 8, q, kcaim) are bounded. In th i s  sense, the solution of Problem 3 does 
not solve a t  the same time the original problem. However, uscng this 
solution as a guide line, we can construct some program E(q), 8(q) ,  Cy(q) 
f rom D which can be regarded as a potential optimal program. 

satisfied on the continuous sections (%(q), %(q)) for  a wide range of q ,  
with the exception of ve ry  small q, when motion along Xopt(q) requires  
sma l l e r  values of Ya than the Yalim available. 

A potential optimal program constructed in this way is shown in 
general  outline in Figure 5.3. 
to  the limiting values of Ya and sliding control sections, with the control 

At the s a T e  time, the functions E(q), c(q) may be discontinuous. The 

Note that under the above constraints, the condition O<v< 1 is generally 

It comprises  flight sections corresponding 
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switching between the two limit  values of Y, along the E(q) line. 
particular cases,  some of the sections shown in Figure 5 . 3  may be missing. 

In 

5. 2. 3. Estimates  of the solution 

Since the solution %(q), 8(q),Fv(q)constructed above is only a potential 
optimal solution, it requires  further verification. One of the possible 
techniques i s  to verify the sufficient conditions of a local minimum 111. 
Another approach is to  improve the solution by successive approximations 
(e.  g., by approximate optimal synthesis), using the available solution a s  
the f i r s t  approximation ( a  reference solution). 

We propose to check the potential optimal solution by comparison with 
another solution (h(q), 0(q), c,(q)),which does not necessarily belong to D 
but on which the functional is a pr ior i  known to attain a value not exceeding 
i t s  exact lower bound on D .  

Let 

(h  (111, e m, C"(11)) =z.  

Then 

Z(zc) 4 inf Z. 
D 

By (5.71) we clearly have 

(5.71) 

Thus AI, provides an estimate of the solution, and the accuracy of this 

We can choose z,, say, a s  the solution of Problem 3.  For boundary 
estimate clearly depends on the particular function 2, chosen. 

conditions in Alternative 1, this estimate is expected to be fairly accurate.  
For boundary conditions in Alternative 2, on the other hand, this estimate 
may prove to be too crude, since in this case the potential minimizing 
solution may markedly differ from t, over some long sections ( see  
Figure 5 . 3 ) .  

construction. 

of six equations (with the argument Q= J Q ~ ~ V ~ . ~ ~ ~ ~ )  

A more exact estimate can be obtained, but this requires  some additional 

Using initial conditions (5.46), le t  us  consider the solution of the sys tem 
1 

0 

h'-max( V s i n e  ) 
"-Ey..,.B QO.5V3.15 

. . . . . . . . . . . . . . . . . . .  . .  

(5.72) 
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The minima and the maxima of the corresponding functions a r e  located 

(5.73) 

In virtue of the right-hand s ides  of equations (5.72)  ( see  Appendix), qL(Q) 
is some lower l imit  value of q (which l ies  below the exact lower l imit  of q 
fo r  the original system) for  every fixed Q, and i t s  inverse  function is some 
lower l imit  of Q for  fixed q (Figure 5.4). We continue the solution of this 
sys tem to i t s  intersection in the plane ( h ~ ,  q ~ )  with the line E(q), 11 . 
quantities relating to the intersection point a r e  denoted with an aster isk 'k. 
A s imi la r  construction can be car r ied  out a t  the left end point of the interval 
(q,, qo)  until h ~ ( q t , )  intersects  z(q) at the point q**. 

The 

4 
FIGURE 5.4 

I, is taken in the form 

The estimate is obtained as follows: 

(5.74) 

(5.75) 

or 
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5. 2.4. Numerical example 

As  an example, we computed the optimal descent of a hypothetical a i r -  
craf t  with the following specifications: 

weight G =  5000km, wingload -=153kg/m2. G 
S 

The polar curve of the aircraf t  is 

I c,=O.l+ 1.83 Isin3al; 
cg=& 1.83sin3acosa. 

(Expressions (5.76) a r e  borrowed from / 6 / .  ) 

Vkm 

?an zaa tr 300 Yo0 500 t l .  t 

(5.76) 
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The following boundary conditions and constraints were used: 

q0 = 2.93. lo6 m ; ho= 80. 103m ; 
r),= 15. 103m; (5.77) I eo= 0; 

N1im=5; 2 cUlim= 0.645. 

N o  constraints were imposed on the heat flux. The density of the atmo- 
sphere was taken in accordance with the SA-64 standard atmosphere model. 

Y 
70 2 4 0 6  

FIGURE 5.6 

The computations were carr ied out on the BESM-2 computer. Equations 
(5.42 - (5.44) were integrated in original form with the argument f . 

The \ resul ts  are plotted in Figures 5.5 and 5.6. 
Figure 5.5 shows the t ime variation of the phase coordinates h, V,  0 and 

Figure 5.6 shows the auxiliary character '  the variables Q, Q for  Yim=5, 2 .  
i s t ics  of the optimal program: the trajectory in the coordinates h, x, where 
x is the horizontal range, and h, r). Figure 5.6 also gives the function 
hL(qL). The following estimates a r e  obtained for this program. 

A l t e r n a t i v e  1. 

A z o .  

A l t e r n a t i v e  2. 

5. 2. 5. Practical realization of the optimal program 

In the particular problem considered in this section, the l imits  for the 
variation of the angle of attack are assumed to be equal in absolute value. 
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The sought solution in this case can be realized in more  than one way. 
u s  consider in some detail two realizations of the optimal program, 

According to one technique, the angle of attack is controlled by altering 
the angle of pitch while maintaining a constant angle of bank y=O or y=n. 
The sections with Ya=-Y,imor Ya=Ylimmay be attained by taking cy= -cylim 
or c,,=cy1fim, respectively. Sections with -qim<Ya<Ylim in this case a r e  
sliding control sections and a r e  attained by switching between the two limit  
values of the angle of attack. 

According to another technique, the banking of the aircraf t  is controlled 
so that cy=cylim o r  cy=-cylim. A number of alternative versions of this 
technique may be considered, corresponding to different programs of a1 
altering the angle of bank. All these programs a r e  characterized by the 
same "mean1' projection of the lift on the vertical  plane, which is equal to 
ya, whereas the "mean" projection of the l i f t  on the horizontal plane is 
variable. 
angle of bank in accordance with the relation 

Let 

One of the possible programs may maintain the instantaneous 

Y c o s y = a ,  
Ylim 

(5.78) 

another program may rotate the aircraf t  with a variable angular banking 
velocity, a third program may induce oscillatory movement of the aircraf t  
in a certain range of banking angles, etc. This freedom of banking control 
c r ea t e s  wide possibilities for la teral  maneuvers. 

With the f i r s t  control technique, the sliding 
control section is realized by switching over 
between the two limit  angles of attack in flight. 
An elementary switching cycle i s  shown in 

values of the functional from i t s  lower bound, 
let  us  consider the expression of the functional 
for C y = C y b  (h ,  q) 
every fixed q depends only on the altitude h. 
The deviations of the functional from its 
minimum a r e  determined by the altitude 
deviations 

0 Figure 5.7. To a s s e s s  the departure of the rea l  - 

The integrand x ( h ,  q) for 

Ah =h-E (q) 

2 for all 
FIGURE 5.7 

Let u s  estimate the magnitude of these deviations 
for different number of cycles. To this end, we introduce the following 
assumptions. 
deviations Ah,-the velocity V and the density e a r e  taken equal to the optimal 
values V ( q ) ,  p(q); cos 0 =  1 ;  sin 8 x 8 .  Then in the relevant range of altitudes, 
for  fixed q, 

In the range of altitudes corresponding to the permissible 

- 
X = X =const; 
Y = Y= const. 

- 
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We further assume an exponential density distribution in the atmosphere, 

e = eoe --Bfh-ho), p= 1-31. m-1. 

Under these assumptions, the equations of the relative deviations 
Ah=h-E, A8=8--8 take the form 

(5.79) 

The change in velocity during a single cycle is ignored. 

hood of 7i by the expression 
The integrand x(q, h )  in (5.65) may be replaced in the relevant neighbor- 

where, a s  is readily seen, 

(5 .81)  

Hence we easily find the relative deviation of the functional f rom i t s  
minimum over a cycle 

(5.82) 

Let us  evaluate the integral in (5.82) using equations (5.79). Integration 
of (5.79) over A t  ( s e e  Figure 5.7) gives 

where 

1 Y + Y  T = -  - T,. 
4 Y  

Inserting the expressions for Ah in (5.82) and integrating, we obtain 
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TC is related to the number of switchings by the equality 

The total deviation 6J is thus expressed by the relation 

(5 .83)  

- SI 
I 
8 
6 
4 
2 

0 
70 20 3a 40 50 T, I ;ec  

FIGURE 5.8 

The dependence of 6/11 on T ,  is shown in Figure 5.8. It is readily seen 
that a program with T,- 30 sec  is already sufficient to provide an adequate 
approximation to the optimum. 
values of cy apparently can be ignored in comparison with 7,. 

The deviation of the functional f rom the t rue  minimum in the second 
technique depends on the particuiar banking control program. It s eems  
that, i r respect ive of the particular program, banking control invariably 
gives a better realization of the optimum for  the s a m e  number of cycles, 
since in this  case  I c y l =  culimat any time. 
bank in accordance with (5.78) attains the exact lower bound of the functional. 

The transition t ime between the two limit 

The program fixing the angle of 

5.2. 6.  Remarks concerning a controlled 
d rag  coefficient 

We will now s e e  how the solution of the problem is affected i f  cxo is 
controllable within cer ta in  l imits  

C ~ O  m i n C c x o < c x ~  max, 

which a r e  either imposed by engineering constraints or are functions of 
h, v, and cy, a s  it follows f rom the condition 

(the constraint on the heat flux is disregarded). 
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Condition (5.84) is better written as a system of two constraints 

where cXlim(h, v) is the solution of the equation 

(5.85) 

(5.86) 

(5.87) 

Let u s  investigate the integrand in (5.64) under these constraints, taking 
cXo t o  be variable.  
cXo, cy corresponds to  the maximum with respect  to  c,o, CI! of the function 

Since f o > O ,  the minimum of the integrand with respect  to 

X ( h ,  v, C,(C,O, Cy)), 

which, for any fixed h, q, is attained on the maximum value of cx(cXo, cy), 
i. e., 

cx(cx0, c y )  =cxlim(h, 9). 

Equation (5.87) may be written in the form 

(5.87a) 

The function c,(c,o, cy) attains i t s  maximum, under constraint (5.87a), 
fo r  C , O = C , ~ ~ , ~ ~ ( ~ ,  V ) ,  where c,omaX is either the solution of equation (5.84) 
for  any fixed h, V ( in  this case c,=O ) o r  the upper engineering l imit  
cXomaxf (in this case I c y l  is obtained f rom (5.87a)). 

the function x(q, h )  attains i t s  minimum on h=Z(q) ,  which is determined from 
the condition 

Inserting the resul ts  for cXo and cy in the integrand in (5.64), we find that 

We  thus see  that the optimal programs with controlled cXo a r e  essentially 
the same as with a fixed GO. 
of controlled C ~ O ,  the altitude Z(q) is evidently g rea t e r  than with fixed c,~. 

If the fixed C=O coincides with Cxomln for the case 
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A p p e n d i x  

Estimating the limits of the admissible phase 
coordinates for  sys tems of differential equations 

Consider a system of differential equations 

i '=f ' ( t ,  Y'. Y2, * . * , Y", u); 
i 2 = f 2 ( t ,  YI, Y2, . . . .  Y", u); 

Y"=f"(t, Y', Y2, . . * , Y", u), 

. . . . . . . . . . . . . .  

with given initial conditions 

(5.89) 

y'(O)=yk Y2(O)=Y:, . . . .  y"(O)= y;. (5.90) 

The functions f l  ( t ,  y1, y2, .... yn, u )  a r e  assumed continuous and differen- 
tiable in a l l  their  arguments, u ( t )  is an 1-dimensional vector function (control 
function) whose values l ie  in some region Q ( f ,  yl, y2, . . . .  y") in the 
r -dimensional space. 

W e  use  (5.89) to form a new sys tem of 2n differential equations 

inf f 1  (f, yl, yz, y". u); . I  .... 
y L =  y ' . y ' , . . . ,  Y".U 
' I  
yu= sup f'(4 y', y2,. . . .  y", a); 

y * . y =  . . .  y " , u  

Y ' . Y l . .  . . . Y " . U  

Y'.Y'... .. Y"U 

' 2  y L =  inf f 2 ( t ,  yl, y 2 , .  . . .  y". u);  

y;= sup f " f ,  YI, YZ,. . . .  Y", u); 

. . . . . . . . . . . . . . . . .  

(5.91) 

The maxima and the minima of the corresponding functions lie in the 
region 

(5.92) 

It can be shown that the functions y: ( t ) ,  yk ( t )  corresponding to  the 
solution of system (5.91) with initial conditions (5.90) constitute cer ta in  
upper and lower l imi t s  (not necessar i ly  exact) of the functions y1 ( t )  
corresponding to  all the admissible solutions of system (5.89) with the 
same initial conditions. 

o rde r  differential equation. 
We will first examine the question of l imi t s  for  the case  of one first- 

The following proposition holds true. 
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L e m m a .  Consider a f i rs t -order  differential equation 

Y = f  (t, Y, u), (5.93) 

where u is an r-dimensional vector  function (a control function) taking its 
values in some region Q(t ,  y) of the r-dimensional space. 
f ( t ,  y, u )  is assumed to be continuous and differentiable i n a l l i t s  arguments.  
The initial condition y(0) =yo is given. 

The function 

The solution y ~ ( t )  of the equation 

(5.94) 

with this initial condition provides the exact lower l imit  for  a l l  the ad- 
missible  values of y and every fixed t 
(5.93) with the same initial condition. 

Mayer problem for  equation (5.93) a r e  

[0, tl] for the solutions of equation 

Indeed, the necessary conditions for a minimum of y(t,)=yl in the 

(5.95) 

(5.96) 

~ ' y , = O - + f + ( t l ) =  -1, (5.97) 

where 

(5.98) 

(5.99) 

q(t ,  y) is an a rb i t ra ry  continuous and differentiable function. 
It follows from (5.95), (5.97) that + ( t ) < O  everywhere on (0, t l ) ,  being 

a solution of a homogeneous l inear  equation which is negative a t  l eas t  at  
one point. 
initial condition y(0) =yo defines a unique solution of the equation. Since 
(5.95) - (5.97) a r e  necessary conditions, the unique solution is of necessity 
optimal. 
y(t1) for equation (5.93) with the given initial condition. 
a rb i t ra ry  time, yL(f) is the exact lower l imit  of all  the admissible values 
of y for any t .  

But then (5.96) is equivalent to (5.95), which together with the 

Thus y~(t1)  is the absolute minimum or the exact lower l imit  of 
Since t I > O  is 

It is similarly proved that the solution of the equation 

(5.100) 

with the same conditions is the exact upper bound of y for  every fixed 
t > O .  

If each equation f rom 
(5.89), say  the equation for  y', is considered independently of the other 
equations, i t  has the s a m e  form as equation (5.93), with u ( t )  and the phase 
coordinates except y' treated as the control functions. The f i r s t  and the 
second equation in (5.91) have the f o r m  of equations (5.94) and (5.100) in 

Let u s  now return to sys tems (5.89), (5.91). 
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relation to (5.93) and they therefore  determine the upper and the lower 
limit of y' i f  the region of the values of y1 where the maximum and the 
minimum a r e  sought coincides with the region of the admissible values of 
y1 or encloses it. 

The initial region of the coordinates is given: in our case  this is the 
point y1  (O)=y,'. 
limits of the admissible values of yf, so that (5.92) define the region of the 
admissible values of the var iables  at any time, etc. 

the components of the solution of system (5.89) at  any time. 

At every succeeding time, equations (5.91) define the 

Hence i t  follows that the solution of system (5.91) defines the l imits of 
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Chapter V I  

NECESSARY AND SUFFICIENT OPTIMUM 
CONDITIONS FOR DISCRETE CONTROLLED 
SYSTEMS 

§ 6.1. STATEMENT OF THE PROBLEM 

Consider two quite general  sets Y and U with elements y and u ,  respec-  
tively, and a finite natural sequence A = (0, 1, 2, . . . , N ) .  
corresponds a subset  V ( i )  of the direct  product Y X U .  

integral argument i defined over A ,  such that for  all i 

To every i t A 

We fur ther  introduce a se t  D of the pa i r s  y ( L ) ,  u (i) of functions of the 
A 

(y(i), n(i))f? V ( i ) ;  i=o, 1,. . . , N ;  (6.1) 

~ ( i f l ) = f [ i ,  ~ ( i ) ,  ~ ( i ) ] ;  i = O ,  1 , . . . ,  N-1,  (6.2) 

where the function (operator)  f ( i ,  y, u )  is defined over the direct  product 
A x Y X U ,  mapping i t  onto the set Y.  It is assumed that D is nonempty. 
An element y is said to  be a s ta te  of the sys tem or i t s  phase state; u is the 
control. The former  differs f rom the la t te r  in  that i t  en te rs  the constraint 
equations (6.2)  with different values of i. 

We define a functional on D ,  

N 

where f o ( i ,  y, u )  is a functional defined on A X Y X U .  
bounded f rom below on D ,  i. e., 

Let the functional 1 be 

in f /=d>-w.  
D 

We seek a sequence {fjs(i) ,  Gs(i) } ( D which minimizes the functional 1 
over  D ,  i. e., a sequence such that / [ f j s ( i ) ,  fis(i)]--d for  S-00. In partic- 
ular, if there  exis ts  an element ( i j ( i ) ,  U ( L ) )  t D  satisfying the equality 
I [ f j ( i ) ,  u ( i ) ] = d  ( this  element is called the absolute minimizing solution), the 
problem reduces to the determination of this element. 
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§ 6.2.  THE OPTIMUM PRINCIPLE 

We define an a rb i t ra ry  functional cp(i, y) on the direct  product AXYand 
use  i t  in the following constructions: 

R( i ,  y, u)=rq[i+l, f ( i ,  Y, u)l--Y@* ! / ) - f O ( i ,  Y. u); ( 6 . 4 )  

( 6 . 6 )  

( 6 . 7 )  
I @o(Y, l l ) = - Y [ 1 .  f ( 0 ,  y, u)l+fO(O, y. u);  

@l(Y, u)=rq(N, y ) + f n ( N ,  Y> u); 
mn= inf Q0(y, u); nil= inf Q1(y, u). 

(Y.u)EV(O) (Y . u ) W ( W  

W e  will prove the following theorem. 
T h e o r e m  6.1.  ( O p t i m u m  p r i n c i p l e ) .  Consider a sequence 

{ y S ( l ) ,  t i s ( i ) }  C D. For  this sequence to minimize the functional 1 over  D it  
is sufficient, and if  for  all it Athe functional fo(i, y, u )  is bounded on v(i) for  
every i E A ,  it is also necessary that there  exis ts  a functional cp(i. y)  sa t i s -  
fying the following conditions: 

1) a function p( i )  expressed by ( 6 . 5 )  is defined on { I ,  2, . . . , N-11; 
2 )  for  all i = l ,  2, . .., N-I, 

R e m a r k .  If the sequence introduced in the theorem has  the form 
ys(i) =y ( i ) ,  U s ( i )  =E(l)for all S ,  the condition of convergence in ( 6 . 8 ) ,  ( 6 . 9 )  
is replaced by equality and the pair y ( i ) ,  C ( i )  E D  satisfying the conditions 
of the theorem is the absolute minimizing solution. 

S u f f i c i e n c y .  W e w i l l u s e t h e l e m m a f r o m S 1 . 2 .  The se t  M o f t h i s  
lemma is identified withD, and the se t  N i s  identified with a new se t  E which 
sat isf ies  all the conditions of D except equalities ( 6 . 2 ) .  On this  se t  we define 
a functional 

For y( i ) ,  u ( i )  ED, L=I .  This is quite obvious if  we rewri te  ( 6 . 1 0 )  in 
the form 

N 

f . [ g  (i), U ( i ) 1 = 1 + 2  ~ [ i ,  ~(41-  y [ i ,  f ( i - I ) ,  g(i--l), u( i -  I)]. ( 6 . 1 1 )  

Suppose that there  exis ts  a functional q(i ,  y) such  that the conditions of 
the theorem a r e  satisfied on some sequence{ys(l), u ~ ( i ) }  ( D. This  sequence 
then minimizes the functional L on E and, in vir tue of the lemma, it a lso 
minimizes the functional I on D. 
- n e  c e s s i t y  - will be proved in 9 6.5 .  

1-1 

The second par t  of the theorem - 
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The present  theorem generalizes to  the d iscre te  case  the sufficient 
optimum conditions formulated for  continuous processes .  
of S 1.1 - S 1.2 are imposed on the sets Y and U and on the functional rp and 
constraint (6.2) is represented as a difference scheme 

If the conditions 

where A is a positive number, we readily see that the functions I? and @ of 
the theorem coincide with the corresponding functions of § 1.2,  apar t  f rom 
a factor  A and t e r m s  of higher o rde r  in A .  
t ransi t ion to  an integral argument made i t  possible to  reduce to  a minimum 
the var ious mathematical concepts and constraints required for  formulating 
the result. The problem is now stated in t e r m s  of general  sets, operators  
defined on these sets, and functionals. 

the problem of minimization of the functional I on D to  the problem of 
maximizing the functional R( i ,  y, u )  on V ( i )  for  every i= 1, 2, . . . , N-1 and 
the functionals O0(y, u )  and @~(y, u ) .  The necessary  relation between these 
subproblems is established by an appropriate choice of the functional rp(i, y).  

The conditions of the theorem leave us  considerable freedom in choosing 
the functional q(L, y) . By imposing additional constraints on rp, we can thus 
develop var ious methods of solution within the framework of the proposed 
formalism,  including d iscre te  analogs of the continuous methods considered 
in previous chapters. 

It is significant that the 

The optimum principle formulated in this section can be applied to  reduce 

We will now descr ibe some of these analogs. 

§ 6.3. BELLMAN'S METHOD 

Suppose that for  all i the se t  V ( i )  coincides with the section V * ( i )  of the 
Let V,(i) be the projection of Vi on y, i. e., the se t  c l a s s  D for a given i. 

of elements y e Y each of which can be paired with a t  l eas t  one element u 
such that (y, u )  e V ( i ) ;  V u ( i ,  y) is the section of V ( i )  for  a given y e  V U ( l ) .  
On V,(i) we construct the functionals 

P (i, y)= sup R( i ,  y, u) ,  i = l ,  2 ,..., N-1; 
u w ,  ( i  ,Y) 

F,(y)= inf @o(Y, u);  
I@, ( N * Y )  

F , ( y ) =  inf @,(y,  u),  i = O ,  1, ..., N 
W V , W .  Y) 

and choose rp(i, y) so  that 
1) the functional P ( i ,  y) exists and is independent of y, 

P ( i ,  y) = c ( i ) ,  i=1 ,  2, . . . , N-1, 

(6 .12)  

(6.13) 

where ~ ( i )  is an a rb i t ra ry  function; 
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2 )  the functional F,(g) exists and is independent of g, 

where cl is an a rb i t ra ry  number. 

for  the functional equation (6.13) with the initial condition (6.14) in the 
direction f rom N to  0. Indeed, f rom (6.14) we find 

In practice, the selection of this cp amounts to solving a Cauchy problem 

-inf f o ( N ,  g, u) +CI, 
UEV, ( N . U )  

and then f rom (6.13) for i=N-1 

y ( N - I ,  g)= sup lcp[N, f ( N - 1 ,  g, u ) ] -  f"N-1, 9,  U)I, (6.15) 
uEV,(N--I. Y )  

etc. 
readily seen that the solution cp(i, 9 )  of this problem always exists. 

If the functional f " ( i ,  g, u )  is bounded on v(i) for  every 1 e A ,  it  is 

Let { U s ( i ,  g )  1 be the sequence of the elements u V u ( L  y) on which 

(6.16)  - 
R [ i ,  g, u,(.y, i ) ] + P ( i ,  g) for i = l ,  2 ,..., N - 1  

and 

I - 
@o [Y, US(0, !/)I + Fo (Y); 
@ I  [Y, ., (N9 911 --f Fl (Y), 

s - r o  

and le t  ( i j s ( l )  } be the sequence of the solutions of the system 

(6.17)  

(6.18) 

The sequence ( y s ( i ) ,  &(i) =iis[l, g s ( i ) ] )  belongs to D and satisfies the 
sufficient conditions of the theorem, i. e., it  is a minimizing sequence. 
This method of selecting cp(l, g )  thus leads to a complete solution of the 
problem. 

setting 
If we take c ( i ) =  0,  and interpret  cp(i, 9 )  as minus the "gain function", 

'YO; g ( N )  = Y N ,  

the functional equation (6.13) coincides with the equation of Bellman's 
optimum principle / 1 /. 

§ 6.4. THE LAGRANGE-PONTRYAGIN METHOD 

Let Y and U be finite-dimensional Euclidean spaces  with the elements 
y= (g ' ,  . . . , g" ) and u= ( u t ,  . . . , u r  ), respectively; V ( i )  =V,(L) XV, ( i ) ;  the sets 



V,(O) and V,,(N) are the fixed points yo 
i = l ,  2 , .  . . ,  N-I coincide with Y ;  V u ( l ) ,  i = O ,  1,. . . , N ,  coincide with U ;  the 
vector functions f(i,  y, u )  and the functions f O ( i ,  y, u )  are continuous and 
differentiable on V ( i ) ,  i = O ,  1, ..., N. 

extremal  ( F ( i ) ,  ii(i)) e D .  Assuming q( i ,  y) to be continuous and differen- 
tiable with respect  to y for  every i and introducing the vector function $(i), 
defined as the gradient of cp at the points of the extremal,  

Y and Y N  Y ,  and V,(i) with 

In this method, the function cp(i, y) is sought simultaneously with the 

$(i) = dy (i,-y)/dy[,=, (i). (6.19) 

we write the necessary conditions for a maximum of R :  

(6.20) 

where 

These equations a r e  a discrete  analog of the Euler -Lagrange equations 
of variational calculus in Pontryagin's form. Together with the boundary 

(6.23) 

they define the extremal ( ? j ( i ) ,  U ( i ) )  C D  and $(i). 
completion, i. e., to  prove that the pair?j(i) ,  U(i)is indeed the sought absolute 
minimizing solution, we must show that there  exists a function q( l ,  y)  
satisfying ( 6.8), (6.9), and (6.19). 

maximum of R(i ,  y, u )  and also for the minimum of I on 0 1 3 1 .  Fur the r  
note that in the discrete  case, as distinct f rom the continuous case, the 
maximum of the Hamiltonian H with respect  to u (Pontryagin's maximum 
principle) does not provide a necessary condition for the maximum of 
R(i,  y, u ) ,  nor is it a necessary condition of optimum 1 3 1 .  

To bring the solution to 

R e m  a r k  . Equations (6.21) are the necessary conditions for the 

5 6.5. PROOF OF NECESSITY O F  THE CONDITIONS 
O F  THE OPTIMUM PRINCIPLE 

We will now prove the second par t  of Theorem 6.1, the n e c e s s i t y . 
It follows f rom the lemma that i f  there  exists a feasible algorithm for 
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for  the construction of the functional q(i ,  y) satisfying the conditions of the 
lemma, then conditions 1 through 3 of the theorem a r e  indeed the necessary 
conditions for  an optimum. Such an algorithm, in particular, is defined 
by Bellman's method i f  the s e t s  V,,(i), i= 1, 2, . . . , N ,  coincide with Y and the 
functional fo(i, y, u )  is bounded on V ( i )  for every fixed i e A. 

Consider the auxiliary problem of minimizing the functional 

on the se t  a of the pa i r s  y(i), u ( i ) .  Here T O [ i ,  y, u]= f o ( i ,  y, u) fo r  y e  Vu(;) 
and fo=U for  y e  V , ( i ) ; U = q f  sup fO( i ,  y, u);  q is any number satisfying 
the inequality 

- 
( Y  . u ) W ( O  I [EA 

The se t  5 differs f rom D only in the s t ructure  of the set f(1) of the ad- 
missible  pa i r s  (y, u )  e Y X U .  
and Vu( i ,  y)  coincides with Vu( i ,  y) for  y e  V,(i) and with U for  y Y/V,( i ) .  
Clearly D ( D and T=I for (y(i) ,  u ( i ) ) E  D. 
does not belong to  D ,  the functional r a s s u m e s  a value which is g rea t e r  
than i t s  value on any element of D. 
(y ( i ) ,  u ( i ) )  

Indeed, a,(i) coincides with Y for  all i Ed, 

which On any element f rom 

Indeed, suppose that the condition 
V ( l )  breaks down for I,<mGN+l values of 1 .  

I -sup I > mq+ i n f l -  sup I > (m - 1) q > 0. 

Then 
- 

u E €  

This  signifies that starting with some S = s  all the elements of the mini- 
mizing sequence of the functional 7 lie in D ,  i. e., ( i j s ( l ) ,  &(l )  } c D for  S>s. 
Since T=I  on D, this  sequence is also a minimizing sequence for  the 
functional I. 

problem. The functionals R(i ,  y, u), (DO, and (Dl corresponding to  this cp(l, y) 
coincide on V ( i )  with the analogous functionals of the original problem, and 
since V ( i )  ( V ( i ) ,  they go on the sequence ( j j ~ ( l ) ,  Us(1) } ( D to their  largest  
(smallest )  value on V ( i ) ,  i. e., the functional q(i ,  y) sat isf ies  conditions 1 
through 3 of Theorem 6.1 for the problem of minimizing 1 on D also. Since 
the problem of minimizing Ton D belongs to  the type of problems for  which 
the existence of the functional cp(i, y) is a necessary condition, 
necessary condition for  the original problem. 

Let the functional q(i ,  y)  satisfy the conditions of the theorem for this  

it is a l so  a 
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Supp I em ent 

THE SIMPLEST FUNCTIONAL ON THE S E T  OF DIS- 
CONTINUOUS FUNCTIONS AND FUNCTIONS WITH 
A BOUNDED DERTVATIVE 

The calculus of variations a rose  back in the 17th and the 18th century a s  a 
branch of mathematical analysis concerned with the sea rch  of objects (functions, 
curves, surfaces, etc. ) on which a given integral attained i t s  minimum or  
maximum value. 
and the f i r s t  par t icular  applications of the theory (the brachistochrone 
problem, the problem of light refraction, the problem of isoperimeters ,  
and la te r  the leas t  action principle), i t  was naturally assumed that the 
minimum (or the maximum) would be attained on a smooth or, in the worst 
case, piecewise- smooth continuous curve, provided the lower bound of the 
functional existed. This conviction persisted until the t ime of Weierstrass, 
and i t  actually served a s  a basis  for  Lagrange 's  method of variations, which 
reduced the problem of the extremum of a functional to a boundary-value 
problem f o r  differential Euler-Lagrange equations whose solution was 
followed by a verification of a whole gamut of necessary and sufficient 
conditions. After Lagrange, considerable contributions to  the theory were 
made by Legendre, Jacobi, Weiers t rass ,  and Hilbert, who developed 
Lagrange's method to  a stage when i t  became a highly refined, powerful, and 
often i r replaceable  tool of analysis, which to this day constitutes the 
fundamental algorithm for  the solution of variational problems. 

numerous examples showing that the minimum of a functional f ( u ) ,  where 
u is an element of some se t  u, is not necessar i ly  attained on the elements 
of that set. In particular, i f  u c1, the minimizing solution does not always 
belong to  the class c1 of continuous smooth functions y ( t )  and i t s  derivative, 
and even the function itself, may have discontinuities. Moreover, a s  we ' 

shall see below, the functiony(f) may fail to represent  a curve. 
follows that by confining the analysis to C, we cannot obtain a conclusive 
solution of the problem regarding the absolute minima of functionals. 

approach to  the problem of the absolute minimum of the functional 

Because of the then prevailing concepts in mathematics 

However, Weiers t rass  in his  famous disputes with Riemann produced 

Hence i t  

This development was apparently responsible for  Hilbert 's unconventional 

f =  F ( y ,  y', s)ds.  j- 
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He rejected the entire refined, sophisticated, and rigorous classical  
apparatus of the method of variations and defined the functional (S. 1 )  on the 
se t  of all rectifiable curves. He then proceeded to construct these curves, 
selecting those whose length - the functional I - approached a lower bound 
( a  minimizing sequence). 
limit curve and established i t s  extremal and functional properties. 
approach constituted the prototype of a new algorithm, one of the so-called 
direct  methods of variational calculus. 
among the various ideas prevailing in this field. 

concerned with the existence of an absolute extremal and the determination 
of i t s  functional properties. 
large-scale  application of the theory of functions of a rea l  variable. 
problem of minimum is considered on the se t  of absolutely continuous 
functions, using Lebesgue integrals. 
1920-1930 's  in the work of Tonelli and his school in the West and Krylov, 
Bogolyubov, and Lavrent'ev in the USSR. Tonelli / 1 7 /  showed, for a 
number of important particular cases ,  that the absolute extremum is 
attained in the c lass  of absolutely continuous functions. 
proved that the problem of the absolute minimum of the functional 

As the next stage, he proved the existence of a 
This 

We will concentrate on two t rends 

1. T h e  t h e o r e t i c a l - f u n c t i o n a l  b r e n d .  This trend is mainly 

A character is t ic  feature of this trend is the 
The 

This trend reached its peak in the 

Lavrent'ev / 1  O/ 

becomes meaningless i f  the c lass  of admissible functions is extended to 
include all  functions of bounded variation. 
conditions for the lower l imit  of the functional (S. 2) in the class  of absolutely 
continuous functions to coincide with i t s  lower limit i n  the c lass  of 
continuously differentiable functions. 
Tonelli. Under certain additional conditions imposed on F ( t ,  9, g'), the 
minimizing solution g ( t )  has almost everywhere a f i rs t  and a second derivative, 
provided it belongs to the class  of absolutely continuous functions. 
Bogolyubov /1/ generalized Tonelli 's  resul ts .  
theoretical-functional school produced quite significant resul ts .  However, 
the fundamental problem of this school - namely the problem of existence 
of the absolute extremum and the functional properties of extremals  - 
remains  on the whole unsolved even for the simplest  functional (S. 2),  not 
to  mention the practical  construction of extremals.  It is not c lear  under 
what conditions the extremal belongs to the c lass  of absolutely continuous 
functions and when it does not belong to this c lass  and, if  the la t ter  applies, 
whether or not the c lass  of the admissible objects can be extended so a s  
to include the objects on which the minimum is attained. 

cannot be solved at all  by traditional theoretical-functional methods. 
all, the choice of the class  of admissible objects is prescribed not by the 
inner logic of the variational calculus but by entirely extraneous factors  
stemming f rom the elements of the theory of functions of a r e a l  variable.  
Thus, the absolutely continuous functions a r e  adopted a s  the c lass  of ad- 
missible objects because the Lebesgue integral  is defined on this c lass .  
But this is clearly of no relevance for the fundamental processes  of the 
calculus of variations. 

He also derived the sufficient 

Later,  this resul t  was strengthened by 

We thus see that the 

The mater ia l  of the following sections indicates that these problems 
After 
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The above considerations reveal  the limitations of the theoretical- 
functional methods, but in  no way detract  f rom their  value, since in a 
number of important ca ses  they provide the best and, possibly, the only 
tool fo r  the solution of the problem of the existence and the propert ies  of 
absolute extremals .  

the a p p l  i e d t r e n d . 
directly involves the sought function on which the extremum is attained and 
cal ls  for approximating this  function by a suitable sequence. 
sequence can be effectively chosen, we automatically prove the existence 
and often approach (although purely theoretically) with any desired accuracy 
to  the solution of the problem. Since the Euler-Lagrange equations are 
analytically solvable in exceptional cases  only, this  direct  approximation is 
generally m o r e  effective than the solution of the corresponding boundary 
problem. 
aspects  of the par t icular  choice of minimizing sequences and their  
convergence. 

was developed by Euler  (his  finite-difference method). After two centur ies  
in oblivion, i t  was resur rec ted  and rigorously developed by Soviet mathema- 
ticians, mainly Lyusternik /1 11, and also Petrovskii, Krylov, Bogolyubov. 
In the West, this  method was taken up by Courant's school 181.  

A powerful direct  method for  the solution of variational problems is 
Ritz's method, f i r s t  advanced in / 1 6 / .  Ritz considers an n-parametr ic  
family of functions y,,(t, a ) ,  a= (a, ,  a2, . . . , a,} .  On these functions, the 
functional /(y) is reduced to  a function of a finite number of variables. 
extremum I ( y n )  = I n  is found by determining the coefficients f rom the 
equations 

2. The second trend in the theory of direct  methods can be described a s  
The determination of a minimizing sequence 

If a minimizing 

The second trend is thus mainly concerned with the var ious 

Historically, the f i r s t  method of construction of a minimizing sequence 

The 

-_ ' " - -o,  i = l ,  2,. . ., n. 
'ai 

In ordinary problems, the sequence of these extrema! functions yn.(t)  was 

PoincarC refer red  
assumed to  go in the l imit  to  a function extremizing the functional I ( y )  
method found wide applications in a var ie ty  of problems. 
to  it a s  a method for  the engineer, thus s t ress ing  i t s  outstanding applied 
importance. 

Very extensive l i terature ,  both Soviet and Western, is currently available 
on Ritz's method. 
/9/ who established a theoretical foundation for  Ritz's method by proving the 
convergence of the minimizing sequence .for a wide range of important 
applied problems. 

is obtained by a combination of the two schools of thought and includes the 
following s tages:  

This 

Of particular mer i t  is the study of Krylov and Tamarkin 

The complete solution of the variational problem by the direct  method 

1. 
2. 

to  the c l a s s  of admissible curves. 
3. Proof of the convergence 

Construction of a minimizing sequence { yn  ( t)}.  
Proof of the convergence of { y n ( t ) }  to  a function y ( t )  which belongs 

inf / (g(f))=l im /(yn(f)). 
Y ( f )  n e -  
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Significant difficulties a r e  encountered already in the f i r s t  stage, since 
we have to solve a sys tem of n finite equations in n unknowns for every fixed 
n - w .  Since these equations, a s  a rule, a r e  nonlinear, new solutions may 
a r i s e  a t  every successive stage, greatly complicating the situation. In 
general, a direct  solution of the variational problem is more  involved than 
the solution by the method of variations, since in addition to obtaining the 
extremal we at  the same time solve the more  general  problem of i t s  
approximation by some given sys tem of functions. 

However, the solution of problems raised by Weiers t rass 's  discovery 
does not necessarily follow Hilbert 's  path: the method of variations can be 
improved and generalized to a wider c lass  of admissible curves. In this 
category we have the derivation of the well-known Erdmann-Weierstrass 
conditions at the corner  points of the extremal and the theory of deeper dis-  
continuities developed by the Soviet mathematician Razmadze /13/. 
Razmadze proceeded from Weiers t rass 's  well-known example: the integral  

1 1  

I =  t2gI2dt 
-1 s' 

with the boundary conditions y (-I) =-1, y( 1) = 1 has a ze ro  lower bound. 
Indeed, the value of this integral on the family of curves  

t 
tan-' - 

g=- 
tan-' - 1 

goes to zero for E-0,  but the lower bound is not attained for any continuous 
curve.  In other words, the problem has no classical  solution. The l imit  
of the family g ( f ,  E )  for E-0 is the discontinuous function 

and I ( i j ) = O .  
include functions with a discontinuity of the f i r s t  kind, the integral can be 
minimized. 
which is unsolvable in the class  of continuous functions has a solution on a 
wider s e t  of curves  with one discontinuity point. 

over the continuous sections: 

Thus, i f  the c lass  of admissible functions is extended to 

Razmadze raised a general  question: in what cases  a problem 

An integral  of a discontinuous function is defined a s  a sum of the integrals 

b I,-0 b 

I(Y)=~ F ( f ,  9, y ' )d t=  F ( t ,  Y, y ' )d t+  1 F ( f ,  Y, g' ldt ,  (S. 3) 
a a I"+O 

where t o  is a point of discontinuity of the f i r s t  kind of y ( t ) .  The functional 
of the discontinuous function y ( t )  defined in this way satisfies the condition 

I 

/ (g)=l im/  (cJ, 
n-- 
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where ( c , }  cc, is an approximating sequence of continuous smooth functions, 
only if  we have a t  the discontinuity point to 

The necessary conditions to  be satisfied by the extrema1 a t  the dis- 
continuity point are derived, 

After that, the theory of sufficient conditions is developed. 

curves, the discontinuity is ''floating", i. e., not fixed. 
when condition (S. 5) is satisfied only in isolated points of the segment 
[a, b] ,  the discontinuity point is fixed (Weiers t rass ' s  example belongs to  
this  category). 

Fur ther  development of the method of variations along the l ines  laid down 
by Razmadze was undertaken by Nikoladze 1121, Ermil in  1 2 ,  3, 41, Kerimov 
1 5 ,  6, 7 1 .  Krylov generalized the fundamental l emma of variational calculus 
using Razmadze's resul ts .  

Razmadze's main achievement, in our opinion, is the inclusion of curves  
containing a finite number of ver t ical  segments  among the admissible 
curves. 
constitutes an important s tep  forward toward the application of a new 
algorithm, described below, which ensures  a complete solution of the 
problem of the absolute minimum for  a wide c lass  of functionals. 
algorithm includes Razmadze's general  case  as a par t icular  case  and 
essentially advances the solution of the problem for  functionals not included 
in this class. Par t icular  resu l t s  of Razmadze's method and the ent i re  
theory of necessary and sufficient conditions lose much of their  value in 
this  case, since both the absolute and the s t rong local minima a r e  attained 
on the (y, z )  minimals constructed by this  algorithm and only on them. 
Razmadze's theory retains  i t s  original value only for  the par t icular  case  of 
fixed discontinuity points. 

Another, although less significant, point to be remembered is that 
definition (S. 3 )  of a functional on a discontinuous function is by no means 
unobjectionable. 
f o r  the s implest  problem of a curve of minimum length, s ince i t  ignores 
the length of the ver t ical  sections. 

functions will be given below. It will include, as a particular case, those 
problems for  which definition (S. 3) is meaningful. 

A new method is proposed for  the solution of variational problems. This 
method establishes the existence of a new c l a s s  of minimizing solutions, 
which are no less typical then the classical Ehler-Lagrange extremals, but 
a r e  of fundamentally different nature. Unlike the Ehler-Lagrange extremals, 
these new extremals  a r e  not solutions of any boundary value problem. Their  
finite equations are written directly in the form of the necessary conditions 
of extremum. The new minimizing solutions a r e  not necessar i ly  functions: 

In general, when condition (S. 4) does not r e s t r i c t  the c l a s s  of admissible 
In particular cases ,  

This  generalization in itself does not resolve the difficulty, but i t  

This 

It suffices to  note that this  definition is meaningless even 

A more  general  and more  natural definition of a functional on discontinuous 
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they may belong to  an entirely new c lass  of objects, called (g, Z )  curves. 
If z ( t ) -  y’(t) everywhere, the (y, Z )  curve is an ordinary piecewise- 
smooth function. If, however, y’(t) + z ( t ) ,  the ( g ,  Z) minimal is not 
a function, but if i t  is known, i. e., the pair of functions y(t), z ( t )  a r e  known, 
a minimizing sequence of piecewise-smooth curves approximating to the 
(y, z )  minimal is also known. The new method is considered for the partic- 
u la r  case  of the s implest  functional 

This  functional is traditionally used a s  a touchstone for  all new theories  
in variational calculus (in many cases  i t  is sufficient to re ject  a theory), 
and more  than half the publications on the subject a r e  concerned with it. 

If the function 

for  p # O  exis ts  and is continuous in p in the ( f ,  y) plane, the proposed 
algorithm gives a complete solution of the problem of the absolute minimum 
of the functional (S. 7).  In this case, the minimum is attained on the above- 
mentioned minimals of the new type. An exceptionally simple necessary 
and sufficient condition of minimum is derived in the fo rm of a minimum 
of some known function S( t ,  y, z )  with respect  to  y and z for  every fixed 
t t  [a, b] .  In other cases ,  the minimum may be attained both on the (y, z )  
minimals and on the classical  Euler-Lagrange extremals. 

functional (S. 7 )  on the se t  of functions with a bounded derivative, i. e., 
functions satisfying inequality constraints. 
a r e  again dealing with minimals which a r e  analogs of the (y, Z) minimals 
of the s implest  functional, but the role of the ver t ical  directions is assumed 
by the limit directions 

Next we consider the important applied problem of the minimum of the 

It i s  shown that in this case we 

iincler cer ta in  conditions, the minimum in this problem i s  attained on 

The new method is applied to solve some modern variational problems 
regular Euler es t remals .  

of applied mechanics. 
moreover, provide an excellent illustration of the application of the new 
method and the actual form of the intangible (y, Z )  minimals. 

These solutions a r e  of independent interest  and, 

S o m e  i n t r o d u c t o r y  p r o p o s i t i o n s  

Let a functional I satisfying the condition 

inf 1 ( u )  > --co 
uEM 

be defined on some set M. 
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We a r e  looking for the absolute minimum of / ( u )  over M, i. e., for an 
object E which satisfies the equality 

The elements of the se t  M do not necessar i ly  include the element U on 
In this case, we shall t ry  to embed M 

1 M in which the minimum element Ti is contained, 
which the lower bound is attained. 
in a wider  set 
appropriately extending the definition of the functional / on the se t  m. 
The extension / E  (the definition of I on m) only has  to meet the following 
requirements:  

1) on the elements of M it coincides with the original functional, i. e., 

2 )  if  u 
Iz ( u ) = I M ( u ) ,  u c M ;  

a t h e r e  exists a sequence f u n }  < M such that 

I E  (u)= lim (uJ. 
n+- 

( S .  10)  

If a suitable se t  m is given (in the particular case Fc M i t  coincides 
with M ) ,  the element ii e JT minimizing the functional 1,- ( u )  on 
determined, and the sequence {En) C M satisfying the condition 

has been 

(S.  11) 

has  been constructed, we consider the problem of the absolute minimum 
of the functional on the se t  M solved. 

The element li 
absolute minimal) of the functional I on M .  
minimizing sequence, and the set  a i s  an /-extension of the se t  M .  

is called the absolute minimizing solution (or the 
The sequence { E n }  is a 

L e m m  a .  Let E satisfy (S.9). Then 

(S. 12)  

Conversely, if  U satisfies (S. 12), (S. 9) holds true. Let (S. 9) be true, 
and suppose that (S. 12)  is not satisfied. 
v (-ET such that / ( u ) < / ( U ) .  We write 

Then there  exists an element 

I ( U ) - I ( u )  =p>o.  

In virtue of the definition of I on M ,  there  exists a sequence {u,, 

Let (S. 12)  be true. 

( M 
such that 1 / ( u ) - / ( u n )  I<P for sufficiently la rge  n and therefore I ( & )  < I ( U ) .  
The las t  inequality contradicts (S. 9), however. Since 
M (a,  we have I ( E ) 4 / ( u ) ,  u E M .  On the other hand, according to the 
definition of I on m, . there exists a sequence ( u , }  ( M such that I ( & )  =/(E). 
Hence, in virtue of the definition of the lower bound, we obtain (S. 9). 

This  lemma shows that the minimals of the functional / on the sets M 
and mcoincide,  so that instead of minimizing the functional on the se t  M 
we may minimize I on m, if  this presents  any advantages. 
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5 S. 1. THE SIMPLEST FUNCTIONAL 

1.1. Statement of the problem 

Consider the minimum of the functional 

b 

W=J F ( t ,  y, g')dt 
a 

(S. 13) 

on the set  U of curves  with the following properties:  

presented a s  continuous functions of some parameter  k ; 

everywhere on [a, b] ,  except a finite set  of points {pi) ( i = l ,  2, ..., k ) ,  
where it may have discontinuities of the first kind; 

the set  [a, bI/{pi]; 

1) the coordinates t and y of the points of the curve u E U may be re- 

2)  the function y ( t )  is continuous along the curve u and is single-valued 

3) the derivative y ' ( t )  of the function y(t)  is continuous and bounded on 

4) the function y ( t )  satisfies the condition 

where a l  and b1 a r e  known; 

function F ( t ,  g, z )  is continuous in all the three arguments together with the 
derivatives Ft ,  F,, F ,  for any z ;  

6) the upper and the lower boundaries rl(1) and r z ( t )  of the region E ,  if 
they exist, have the properties 1 - 3  of the set  U.  

D e f i n i t i o n  1. The right-hand side of (S. 13) is interpreted a s  a line 
integral along the curve u in the direction f rom the point A ( a ,  a l )  to the 
point E ( b ,  b l ) ,  i. e., 

5) the curves u U l ie in the region E on the ( t ,  y )  plane where the 

(S. 15) 

where 

k is the parameter  taking the values k = a  for t=a,  g=al  and k = p > a  for  
f = b ,  g=b l  which increases  along u f rom A to B .  

In virtue of the above properties of the function F ( t ,  g, z )  and the set  u , 
the la t ter  contains curves on which the functional is finite. 
to be meaningful, we have to  assume further that 

Fo r  the problem 

inf I(u) =m>--oo. 
UEU 

(S. 17) 

Taking a%=& for pi<t<pi+l and dk=ldy l  for t=p i ,  i = O ,  1,  . . . ,  k ,  where 
po=a, pk=b. we obtain f rom Definition 1 
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where 

( S .  18) 

( S .  19) 

( S .  21) 

w(t ,  y, sigrl(y-F))=limf(t, y, P, 1); 
- 

Ipl --t 0, s ignp=s ign(y -g ) .  (S.  22) 

Because of the properties of the function F ( t ,  y, z )  and the set  U, the integrals 
/:always exist. 
f o r  which the integrals (S. 20) exist on the vertical  sections ( i f  any). 

Therefore I ( u )  exists on those and only those curves IL EU 

Let the curve i i E  U be the minimal of I (u) in  U, i. e., / ( U ) = i n f / ( u ) .  By 

(S. 17), /(E) exists and the existence of the integrals @(pi, yi, Yi)  on the 
vertical  sections therefore may be regarded a s  the first necessary condition 
to be satisfied by the minimizing solution E. 

This one condition enables us, in some highly important particular cases, 
to a s s e s s  the qualitative character of the minimum and, in particularj  the 
possible existence of discontinuities and their  position. 

of O(t ,  y, Y)  at  the points of discontinuity does not impose any additional 
constraints on the c lass  of admissible curves, i. e., @(t ,  g, g) exists for 
all  t ,  g, ~ E B .  

U E U  

The general  case in our treatment is such that the condition of existence 

1. 2. Relation to  the problem of the absolute minimum 
in the class of piecewise-smooth functions C, 

In the class  of piecewise-smooth functions CI, Definition 1 coincides 

Let the object U E U be the absolute minimal of I on 0, where D is some 
with the conventional classical  Riemann integral / ( u ) ,  I /  

I-extension of U .  The set  
curve u E  U there  exists a sequence (c,} C C, such that 

c1. 
is the I-extension of the c lass  Clif for every 

ZU (a)= lim Z (e,) 
"-.=a 

(S .  23)  

Here the subscript  u indicates that the functional is taken in the sense of 
(S. 15). Indeed, in virtue of the definition of the I -extension, for any u E U 
there  exists a sequence (u , )  C U satisfying (S. 1 2 )  and, therefore, by ( S .  23),  
also a sequence (c,) C C1 such that 

f;(u)=lim (c;). 
n e -  

__ 
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By our lemma, the absolute minimal E of the functional 1 in u is therefore 
also the absolute minimal in the c l a s s  C,, i. e., 

( S .  24) 

i f  for every u E U there  exists a sequence IC,, 1 ( CI satisfying (S. 23) .  

general  case. 

re fe r  t o  it a s  the absolute minimal of the functional 1 (without mentioning 
any classes) .  

We will show in what follows that this condition is always satisfied in the 
In the so-called particular cases,  it is not always satisfied. 

If the absolute minimal in U is also the absolute minimal in C,, we will 

1.3. The general  case 

The general  case in our terminology is such that the condition of 
existence of @(t ,  y, i j )  on the vertical  sections does not impose any additional 
res t r ic t ions on the class  of curves, i. e., @(t,  y, ?j) exists for all t ,  Y, 5. 
This implies that for every fixed 1 e [u, b ] ,  the two functions of a single 
variable f [ t ,  g, +O,l]should be summable on any segment [g, i j ]  C [ r z ( t ) ,  h ( t ) l .  
In what follows, we assume that both functions f ( t ,  g, &0,1) moreover 
exis ts  and a r e  continuous with their  derivatives f t  and fl, everywhere in B .  

We wi l l  s e e  below that the character  of the extremals  is determined by 
the properties of the function f ( t ,  y, p ,  1 )  for p = O ,  specifically, by whether 
the function f ( t ,  y, p ,  1 )  for p = O  is continuous or discontinuous in p .  Both 
these cases  a r e  of the greatest  significance both f rom theoretical and applied 
considerations, and we wi l l  consider them separately in some detail. 

complete solution of the problem of absolute minimum of the functional 
(S.  13) in the f i r s t  case and discloses a number of highly valuable new facts 
in the second. 
foundation for all further constructions (Figure S. 1). 

g, , ( t )=yi+y;( t - f , )  for t i <  f < f i + , ,  i = O ,  1 , . . . ,  n-1, where 

The system of definitions and theorems introduced below leads to a 

It admits of very extensive generalizations and provides a 

Consider the set  of polygonal l ines , (y,) (u, describedbythefunctions 

a = f o  < t ,  < . . . < f,.-l < f , = b  

a r e  the abscissas  of the discontinuity points of y n ( t ) ,  and gi, y; a r e  2n in- 
dependent parameters  defining the polygonal line y n  for any fixed partition. 

D e f i n i t i o n  2. Consider a line u U defined by the function y ( t ) .  
W e  shall  say that the sequence (yn} approximates the line u, or (y,,}--u, 
if  n+m 

Yi=Y (ti +0) , (S. 25) 

and for any E>O, 

P,+*-f,I < e; Iy; - g'(t,+0)1 < E (S. 26) 
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for n > N ( & ) .  
on U. 

defined, bounded, and continuous on the se t  [a, b ] / { p i } .  
sequence {y,,) so that 

Here i=O, 1, . . . , n-I. In this sense, {yn) is everywhere dense 

Consider a pair  of functions y(f) E U and ~ ( f )  which a r e  D e f i n i t i o n  3. 
We construct the 

gi=g (ti SO) (S. 27)  

and for any E>O 

(S. 28) 

FIGURE S. 1 

for  ~ > N ( E ) ,  i=O, I ,  . . , , n-I. 
approximates the (y, z )  line uo, o r  ( y A } - u O .  
is designated Uo. 
(9, z )  line uo and z ( f )  is the local slope of this line. 

In this case we say that the sequence {y,,} 

The function g ( t )  is the zero closeness function of the 
The set  of these (y, 2) l ines 

If 

z ( f )  =9'(t) ( S .  29)  

almost everywhere on [u, b ] ,  we have uo EU. 

l imit  

Thus U C UO. 
D e  f i n  i t i o n  4. The functional (S. 13) of a (g, Z )  line is defined a s  the 

1 (u,)= lim 1 (yJ.  (S. 30) 
{T"I+"O 

T h e o r e m  1. If the function f(f, g, p, 1) exists and is continuous in p 
f o r  p=O and for any f, y E B ,  the functional I(&), uoc UO, exists and is 
expressed by the formula 

or by 

(S. 31) 

(S. 32) 
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where 

Y 

s ( f ,  Y, z ) = F ( f ,  y, Z1-W (4 Y) ( Z - - C ' ( W -  J W l ( f ,  E)&,  ( S .  33) 
C ( 0  

where c ( f )  e CI is an a rb i t r a ry  function; W(t, y) and @(t, y, c) a r e  defined by 
(S. 20) and (S. 22);  pi a r e  the discontinuity points of y( l ) ,  i=O,  1, . . . , k .  

f ( t ,  y, p ,  1 )  is continuous for p=o,  
The symbol ( R )  indicates that a Riemann integral is meant. Since 

W(t, y. l ) = W ( t ,  y, -l)=W(t,  y)=f( f ,  y, 0, 1 ) .  (S. 34) 

Using (S. 20)  and (S. 34), we may write 

@(t> y, Y)=@(t ,  y. c) - -Q)( t ,  g, c ) ,  (S.  35) 

where ~ ( t )  is an arbi t rary function. In what follows we take c ( t )  E CI. 
By (S. 18) and (S. 35), 

. . . ,  , 

( S .  36) 

n-1, o r  

(S.37) 

( S .  38) 

Taking the l imit  yn-uo in (S. 30), some t e r m s  in (S. 38) go to  infinity, 

In virtue of the properties of F(1,  y, z), the function S[t, y ( t ) ,  z ( t ) ] i s  
and Ifi+l--tiI -0. 

continuous in all its three arguments in region B of the ( t ,  y)  plane for any 
finite z.  Since y ( t )  and z ( t )  a r e  continuous almost everywhere and bounded 
on [a, 61, S[t, y ( t ) ,  z ( t ) ]  is also continuous almost everywhere, so that by the 
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Lebesgue theorem, the function S( t ,  y ( t ) .  z ( t ) )  is Riemann-integrable. 
indicates that for (yn)-uo the sum (S. 38) has a limit, i. e., it is independent 
of the particular choice of the sequence { y n } - u o  (independent of the partition 
{t;  } and the position ofthe points t i ) .  

We proved the existence of the functional I ( u 0 )  on any (y, Z )  line uo E UO 
and the validity of (S. 31). Similarly, start ing with (S. 18), we prove the 
validity of (S. 31) (this formula is proved in a more  general  fo rm in 
Theorem 2). Q. E. D. 

T h e  or e m  2. 
kind in p for p = O  for any (t ,  y) E B ,  the functional I ( U O ) ,  uo c U o ,  exists and 
is expressed by the equality 

This 

If the function f ( f ,  g, p ,  1) has a discontinuity of the f i rs t  

k-1 p i + , - O  

or by the equality 

(S. 39)  

F ( t ,  Y ( f ) ,  z ( t ) )  +Wt, y(t), sign(y’(f)--z(t))I(y’(t)--z(t)) 

is bounded and continuous almost everywhere in the intervals (pi, pi+]). 
Hence, by the Lebesgue theorem, it is Riemann-integrable, i. e., the 
l imit  (S. 30), where f(yn) is expressed in the form (S. 41), exists and is 
independent of the choice of the sequence y n - U o .  

The validity of (S. 40) is proved along the same lines a s  Theorem 1. 
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C o r o l l a r y  1. The functional [ ( u o ) ,  uoE UO, dependsontwoindependent 
functions y ( t )  and z ( t )  whose derivatives either do not enter  the integrand, 
as in (S. 31), or only enter  as sign (y’-z), as in (S. 40). 

for / ( u o )  that the functional is continuous on the s e t  UO of (y, z )  l ines in the 
sense that 

C o r  01 1 a r y 2. It follows directly f rom expressions (S. 31)  and (S.  39)  

i f  

everywhere on [a, 61, except the q -neighborhoods of the points pi where 
y ( t )  is discontinuous. 

4 coincide on the s e t  of y ( t ) .  

that the se t  UO is an /-extension of the se t  U .  

smooth curves, i .  e., for y ’ ( t )  =z ( t ) .  The continuity of the functional on r/, 
shows that i t s  definition can be extended for  these curves i f  we take for 

C o r  o 11 a r y 3. 

C o r  o 11 a r y 4. 

R e m a r k .  Expression (S. 40) for /(u), u U o ,  is not defined on ordinary 

It follows f rom (S. 32) and (S. 40) that Definitions 1 and 

It follows directly f rom Definition 4 and Corollary 3 

y’--z = 0 

sign(y’--z)=l, o r  sign(y’-z) =--I. 

In this case,  expression (S. 40), like (S. 39) ,  is defined over  the entire 

We will now show that U ,  and also Uo, are I-extensions of the c l a s s  C, 
s e t  Uo. 

of piecewise-smooth functions, i. e., for any line u E U  t he re  is a sequence 
(c,}  C, such that 

(S .  23)  

Consider some line u U .  We replace all the vertical  segments of the 
I l ine 11 to  segments making an angle of - to  the ver t ical  which pass through 
n 

the midpoints of the ver t ical  segments. Let n>O if  the deflection f r o m  the 
vertical  is in the clockwise direction, and n<O i f  the deflection is counter- 
clockwise. The deflection should be such that the resulting line C n  c o r r e s -  
ponds to a single-valued function y, ( t ) ,  i. e., 
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Clearly ( c n )  (C,; then 

1 

(S. 43) 

I 
sign n = sigrl d g .  

Taking the l imit  n--oo in (S. 43), we obtain on the right expression (S. 18) 
fo r  f(u) in the sense  of Definition 1. Hence, for  any line u c  U ,  there  
exis ts  a sequence {c,} ( CI which sat isf ies  (S. 23). 
minimal on U is at the same t ime the absolute minimal of (S. 13) on C,. 

elements, ( g ,  Z )  lines: g ( t )  CU and z ( t )  is bounded everywhere on [a, b] and 
continuous on [a, b ] / { p i } .  where {pi} is a finite se t  of points. 

D e  f i n i  t i o n  5 .  We say  that the sequence of (9, z )  lines {u , }  E UO goes 
to  a (9, z )  object u 

Therefore, the absolute 

In our  definition of U,, we imposed the following conditions on i t s  

UO i f  for  fixed t ,  almost  everywhere on [a, bJ. 

The las t  equalities a r e  
is finite a t  a point t ,  then 

(S .  44) 
z( t )= l im z, ( t ) .  

n - r m  

to be interpreted in the following sense: if  y ( t )  
for any given E > O  there  exis ts  N such that 

If y ( t )  = t.00, then for  any M>O or, respectively, M<O, there  exis ts  
N such that for  n > N  

g n ( t )  >M>O, ( S .  46) 

or, respectively, 

y n ( t )  <M<O. (S. 47)  

The convergence for  z, ( t )  is s imilar ly  interpreted. 
The se t  00 of (9, z )  objects is called the closure of UO. Evidently, 0,, is 

an I-extension of Uo. 
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D e f i n  i t i o n  6. The functional (S. 13) on an object E Oo is defined by 
the equality 

f ( u ) =  lim I(a,,). 
( u n ) + u , ( u n }  cuo 

(S. 48) 

Here I ( & )  is expressed by any one of the equalities (S. 31), (S. 32), (S. 39), 

Let u s  now consider separately the two cases  when f ( t ,  y, p, 1 )  is 

1. The function f ( t ,  y, p, 1 )  is continuous in p for p=O and for any (t,  y) 
The problem of the absolute minimum of the functional (S. 13) in this case 

T h e  o r e m 3 .  

(S. 40). 

continuous at p = O  and when it has a discontinuity a t  p=O. 
B.  

is completely solved by the following theorem. 

attained on a (y, z )  object E ~ ~ o  which sat isf ies  the condition 
The absolute minimum of the functional (S. 13) is 

s (f, y, Z)' inf S(6,  y, z )  
r , ( t ) < m o , ( t ) ;  - - < z < -  

for fixed f almost everywhere on [a, b] and only on this object. 

(S. 49) 

P r o o f .  We will first prove the theorem for the absolute maximum on 
Uo. By (S. 17) and the lemma we have 

inf f (u )=m >-w. 
U E U ,  

(S. 50) 

According to the definition of a lower bound, there  exists a sequence 
{u,} ( uo such that I ( U n ) + f ? L  / (u, ) ,<m. Expression (S. 31) for I ( u ) ,  u 

and (S. 50) directly show that: 

Uo, 
n+ca 

1. The lower bound of s(t, y, z)exis t s  everywhere on [a, 61, 

Z ( f ) =  Inf S(t,  y, z) 
r,(t)<y<r,(t) .  - -<z<+- 

and since S ( f ,  y, z )  is continuous in y and z ,  there  exist y ( t )  and T ( t )  on 
which S = f ( f ) .  

2. On the sequence {u , )  for n-+cw, 

s(t, .~nq 2.1 + and yn ( t )  + Y ( f ) ,  zn ( f )  + ( f )  

in the sence of Definition 5. 
scribed by the pair  ( y ( t ) ,  I ( t ) )  belongs to  OO. 

3. 
have 

Since(y,(t), z n ( t ) )  E UO, the (g, z )  object li de- 

F r o m  the definition of the lower bound and f rom item 2 above we 

b 

m= lim f(u,,)= lim S( t ,  y,,, z,) dt$const. (S. 51) 
n e - .  (u,)su~ un(t )+;( f ) :  Zn(f )+ZTf ,  a 

By Definition 6, the las t  expression is the functional I ( U ) ,  li COO. 
We proved that the absoluf_e minimum of the functional (S. 13) on UO is 

attained on the (y, z )  object a E tio satisfying (S. 49) and, by i tem 2, only 

1 69 



on this object. Since UO, 
and hence 0 0 ,  a r e  1-extensions of u and CI ,  our lemma shows that the 
theorem remains  t rue  for the absolute minimum also. 

i t s  partial  derivatives, that i f  the zero closeness function y ( t )  of the 
minimal si l i es  inside the region B,  and the local slope Y ( t )  is finite, then 
almost everywhere on [a, 61 

The theorem is thus valid for minima on U o .  

Q. E. D. 
C o r  o 11 a r y 1 .  It follows f r o m  (S. 49) and the continuity of S ( t ,  y, z )  and 

(S. 52) 

C or o 11 a r y 2. If the classical  Euler-Lagrange extremal y(t) which 
is the solution of the equation 

6/(y(t)) =o 
in the c lass  c1 of. continuous piecewise-smooth functions does not satisfy 
(S. 49) (f=@' in this case), the functional 1 either has a weak local minimum 
in CI on this extremal or has no minimum altogether. 
minimum in C1, and certainly no absolute minimum, can be attained on this 
extremal. 

functional (S. 13)  attains i t s  absolute minimum, i. e., it defines the zero 
closeness function y ( t )  of the functional and the local slope T ( t ) .  
that act) e U and v'(t)  = Y ( t )  everywxere on [a, b ] ,  except a finite number of 
points, then U E u .  Otherwise, the minimal i i U , but the solution 
~ ( l ) ,  z ( t )  defines a minimizing sequence {vn} U. If U U o ,  the minimizing 
sequence {yn) C u is constructed as indicated in Definition 2, i. e., we 
construct the polygonal l ines y n  so that 

No strong local 

D i s c u s s i o n  . Condition (S. 49) defines a (y, z )  object U on which the 

If we find 

I -  - 
!/i=g(ti); ! / i = ~ ( f i ) ,  i = O ,  I ,  2 , . . . ,  11-1. 

Irrespective of the partition of the segment [a, 61, 

If U Uo, we f i rs t  select  a sequence of pairs  & ( t ) .  z,,,(t) ] C U, which 
goes to ti in the sense of Definition 5, and on each element of the sequence 
we construct a sequence of polygonal l ines { y v l , , L }  -u," 
Definition 3. Any sequence (y'] selected so that tn-m, n+oo for  h-oo i s  
a minimizing sequence. 

Thus, if  we found the extremal pair  y ( t ) ,  ?(I)  we have all  the elements 
of the minimizing sequence. 

If the minimal U 
since the minimal itself cannot be constructed. 

Let u s  investigate the minimals in more  detail, assuming additionally 
that F(f, y, Z )  and W ( t ,  Y) a r e  twice differentiable in all their  three arguments 
in region B of the ( t ,  y) plane for any Z .  

Uo i n  the sence of 

u, the minimizing sequence is of special importance, 

170 

.. .. .. .. .... 



1. Let(S.52) haveaunique solution y o ( f ) ,  zo(f) andaposit ivedeterminant 

(S. 53) 

Since the right-hand s ides  of (S. 52) a r e  continuous and have continuous 
partial  derivatives, the existence theorem of implicit functions indicates that 
yO(t), z o ( f )  a r e  continuous and differentiable on [a, b] .  
everywhere on [a, b],  yO(t) coincides with the zero closeness function v(f )  of 
the minimal and z o ( t )  coincides with i t s  local slope f ( f )  everywhere on [a, b] .  
At the points t=a and t=b,  thevalues of i j  and yo ingeneraldo not coincide: 

If r z ( t )  <yo(f)<I',(t) 

i j (a )  =al#Yo(a). 

Thus, i f  D ( t ,  yo, zo) >0, the minimal UO not only belongs to UO, but i t s  
zero closeness function i j ( f )  and the local slope T ( f )  a r e  continuous and 
differentiable everywhere on [a, b], except the points f = a  and f = b ,  where 
i j ( f ) ,  in general, may have discontinuities of the first kind. If a posteriori  
we find that ,q'(f) = f ( t )  almost everywhere on [a, b ] ,  then ii e u. 

Now suppose that sys tem (S. 52) has a finite number of solutions for 
which D#O almost everywhere on [a, b]. By the existence theorem of 
implicit functions, these solutions a r e  piecewise-differentiable. The 
minimal y ( t ) ,  f ( f )  consists of the sections of these solutions with D>O and 
of sections of the boundary. The selection of these sections is determined 
by the sufficient and the necessary condition (S. 49). 
same condition that, besides the end points, the functions y ( t )  and E ( t )  may 
have discontinuities of the f i r s t  kind at  points f = p i ,  where 

2 .  

It follows f rom the 

S(P; ,  Y(')(P;), z( l ) (P i ) )=s(P; ,  Y'2'(P;), A2) (Pi)). (S. 54) 

Here y ( ' ) ( t ) ,  z ( ' ) ( f )  and y ( * ) ( t ) ,  d 2 ) ( t )  a r e  different solutions of (S. 52) or 
pieces of the boundary. At those points where (S. 54) is not satisfied but 
D=O, y'(f) or  f'(t) may become infinite or not exist  a t  all. Moreover, at 
some points of the segment [a, 61 or on some continuum, we may find that 
condition (S.49) is not satisfiedfor any ofthe solutions of (S.52), and inf S( t ,  y, z )  
i s  attained for z= ko0 or, i f  B is unbounded, for y= &oc ( S  remaining 
bounded). 
belong either to UO or  to 00. 

By Theorem 3, it always belongs to  Do. 
minimal f ( t ) ,  y ( f )  is fully defined by (S. 49). 

Together with region B ,  we introduce a right cylinder Q in the ( f ,  y, z )  
space having B a s  i t s  base in the ( t ,  y) plane. According to the statement 
of our problem, the function F ( f ,  q, z )  is continuous in Q together with i t s  
derivatives Ft, F,, F,. 

the ( f ,  y, z )  space. 

have 

It follows that in this ca se  the minimal li does not necessarily 

As in previous cases,  the 

3.  

Suppose the minimum is attained on the upper boundary rl(t). 

System (S. 52) has no solutions in the interior of the cylinder Q in 
The minimum is attained on the boundary of Q. 

We thus 

g=rl(t). (S. 55) 
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The local slope F of the minimal is obtained f rom the condition 

S (f, rl (t), 3 = inf s (t ,  rl (t), 2). 
-m <z<m 

If F ( t )  is finite, i t  satisfies the necessary condition 

(S. 56) 

If rl ( t )  We would like to make 

If r’(t)-F(t)<O, the approximating sequence {y,,) constructed along the 

U and T ( t )  is bounded, we have E @.Jo. 
one observation concerning this case. 

previous,lines, i. e., the curve 

qi=;(fi+o); q;=z(t,+O), i=o, 1, 2, ... n, 
does not belong to the se t  of admissible lines, since it extends beyond the 
boundary of B .  In this case we should take 

The sequence {yn] constructed in this way clearly belongs to B and, in 
virtue of the continuity of the functional I(u), u 
i t  is also a minimizing sequence. 

equivalent to the single equation 

UO, in the sense of (S. 42), 

4. D ( t ,  q, z )  = O  everywhere in the cylinder Q. System (S. 52) is 

This equation contains two independent unknown functions, y and z .  
Indeed, the c l a s s  Ub in general, contains infinitelymany (Y, Z) l ines sa t i s -  
fying the necessary conditions (S. 52). These l ines may include extremals  
which belong to U. The la t te r  should satisfy, almost everywhere on [u, b], 
the differential equation 

f ( t  Y, Y’) =o. (S. 60) 

Such an extrema1 may have discontinuities of the first kind on any finite 
On se t  of a rb i t ra r i ly  selected points &(-[a, b] containing at l eas t  one point. 

the smooth sections i t  satisfies the equation 

Y ( t )  =yO(t, C i ) ,  

where yo(t, Ci) is a general  solution of (S. 60). and ci is the integral constant 
for the  i-thsection, i f  there  exist Ci#Ci+l such that condition (S. 54) is 
satisfied a t  the points t i ,  which takes in the present case the form 
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Thus in general  the extremal ii belonging to the se t  U is not unique. The 
only exception is the case when 

f z =  0. (S. 62)  

The extremal is then unique and is defined by the equation 

f ( t ,  g) =o. 
In virtue of the properties of F ( t ,  g, z )  and W ( t ,  g), the function Y ( t )  is 

continuous and smooth everywhere except the end points, provided f v ( f ,  g) f O  
everywhere on (u,  6). 

the least  number of discontinuities on U .  
extremal in our case consists of two smooth branches which a r e  solutions 
of equation (S. 60) passing through the points (u, a,)  and (6, b , )  and a straight 
vertical  segment t = t o  joining the ends of these branches, where t o  is some 
point of the segment [a, b ] .  

This result  coincides with Razmadze's result  obtained in 1131. 
Razmadze's condition for the case of a "floating" discontinuity point a lso 
can be obtained without difficulty: 

A more  restr ic ted problem can be formulated: find the extremal with 
It is readily seen that this 

(S. 63) 

where go=g(to+O), yo=g(to-o). To this end, it suffices to take W ( t ,  y)  = O .  
in (S .  52) and (S. 54). 
the second condition in (S. 6), and from (S. 54) we obtain the f i rs t  equation 
in ( S .  6). 
discontinuity a r e  valid only when W=O. 

Then f rom the second equation in (S. 52) we obtain 

Note that Razmadze's conditions both for a fixed and a "floating" 

The sufficient conditions of extremum, a s  before, a r e  presented by 

5. 
on [a, 61, the minimal UO 
everywhere sat isf ies  Euler ' s  equation 

( S .  49). 
As we have seen above, i f  y ( t )  e U and T ( t )  = i j ' ( t )  almost everywhere 

U .  It is readily seen that in this case y ( t )  almost 

(S. 64) 

To show this, it suffices to differentiate the second equation in (S. 52) 

C o n  c 1 u s i o n  s. I. Let u s  summar ize  the resul ts  of this section. If the 
and subtract  it f rom the f i rs t .  

function f ( t ,  g, p ,  1 )  fo r  p=O,  (t ,  g) B ,  exists and is continuous in p ,  the 
absolute extremum of the functional (S. 13) is attained on extremals  of a 
special  kind (we call them type a extremals),  which a r e  fundamentally 
different f rom the classical  Euler extremals  (which we call type b 
extremals).  In distinction from type b extremals,  every l inear  element 
(y, 2) of type a extremals is independent of the other elements and minimizes 
the function S ( t ,  y, z )  for every fixed t To obtain finite equations 
of these extremals,  we do not have to solve any boundary-value problems: 
they a r e  obtained directly in the form of the necessary condition (S. 52). 
An extremal on U may belong either to this se t  o r  to  a l a rge r  se t  Uo.  

[u, b]. 

In 
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the la t ter  case, although U C U ,  the solution y ( t ) ,  r ( t )  fully descr ibes  a 
minimizing sequence (yn) EU (see Uefinition 3). 

of the f i r s t  kind in p .  

conditions of minimum and providing a complete solution of the problem 
exists. We will only der ive the necessary  conditions of minimum in UO. 

The minimum is attained both on the (9, 2) minimals of the type 
considered before and on the classical  Euler-Lagrange extremals .  Let 
u c U o .  

11. 

In this case, no analog of Theorem 3 giving the necessary  and sufficient 

The function f ( t ,  g, p, 1 )  for  p=O and any f, g E B  has  a discontinuity 

By Theorem 2 we have 

[ F ( t ,  9, z ) + W ( f ,  y, sign (y‘--)l x 

(S. 39) 

H e r e  pi a r e  discontinuity points of y ( t ) .  By (S. 39), the functional I(u) 
may be treated a s  depending on a pair of independent functions y ( t ) ,  z(f). 
Using expression (S. 39), we can write and investigate the expression for 
the f i rs t  variation of I ( u )  with respect  to g ( t )  and z ( t )  in the usual c lass ical  
sense.  
requirement of smooth z ( t )  on the intervals (pi, pi+,). The discontinuity 
points pi a r e  assumed fixed. 

The c lass  of admissible functions i s  further res t r ic ted by the 

The necessary condition of minimum is 
61 ( u )  2 0 .  ( S .  65) 

The expression of the f i r s t  variation is 

--W[l%, y;, Sig11(Yi-Ili)+i;gi-6Yi)]ayij. (S. 6 6 )  
where 

&g= g‘ (0- y(f);  fiz=z’(f) --Z(t); fig‘ =g* ( f )  - !/‘ ( f ) ,  

g ” ( l ) ,  z‘:(f) 
sufficiently c lose to  f i rs t  o rder  to the line u .  

to  g‘ coincides with the increment with respect  to g’ ( t ) .  Therefore  y*’is 
not necessar i ly  c lose to  y ’ ( t )  and we may take 6 g ( f )  E U .  After simple 
manipulations, the integral t e r m  in the expression of the f i r s t  variation 
is easily written in the form 

a r e  the corresponding functions of the line u* E Uo which is 

Since the functional (S. 39) is l inear  in g ’ ( f ) >  i t s  variation with respect  

This  expression gives 6 I ( u )  a s  a functional of four independent functions 
g ( t ) ,  z ( f ) ,  6 y ( t )  and 6(g’--z(t)). Since 6 g ( f )  E U, we regard the functions 

174 



I 

y ( t ) , z ( t ) ,  and s(y’--z(t)) a s  given and use  (S. 31) and (S. 39) to  obtain 

W ( f ,  y, sign€) E> 0. ( S .  68) 

This is readily established i f  we take in (S. 67)  

ay (t)= 0 

for  

and 

for  



For a maximum, this inequality should be reversed.  This condition 
can be regarded a s  the first necessary condition to be satisfied by the 
functional i f  it is to have an extremum on the c lass  u of admissible lines. 

2. The ex t remals  of the functional (S. 13) may be of the following types: 
a) The functions y ( t )  and z ( t )  satisfy the equations 

It is readily seen that these equations lead to zero  coefficients before 
6y and S(y‘-z), To verify this, i t  suffices to differentiate the second equation 
in (S. 69) and subtract  it f rom the f i rs t .  Equations (S. 69) may be written 
in a more detailed form 

(S. 70) 

(S. 71) 

s ; d y - W y ( t , y , l )  z-WW,( t ,y ,1)=0;  

S, F,- W ( f , y , l ) = O ,  Y ’ - Z  > 0; 
S y  EZ FU- Wg(t,y,- 1)- W ( t , y , -  1)=O; 
s, = F z - W ( i , y , -  1)=0, y ’ -2 < 0. 

Along these extremals, the f i rs t  variation is zero, i. e., the extremals  
a r e  stationary. 
necessary conditions of minimum of the function S ( t ,  y, z ) ,  but now the 
function additionally depends on the sign of the difference Y’-z. These 
extremals  a r e  analogous to the (y, z )  minimals of the previous section. Any 
infinitesimally small  section of these extremals  retains the property of 
maximum or minimum and is independent of all  other elements, but only 
within the l imi t s  consistent with the inequalities in (S.70) and (S. 71). 

extremals  with one reservat ion:  condition (S. 49) is not sufficient in this 
case for an absolute minimum. 

conditions 

Moreover, a s  we see  from (S. 69), they satisfy the 

All  that we have said in the previous section remains valid for these 

b) The functions y ( t )  and z ( l )  a r e  continuous on (a, 6) and satisfy the 

d 
d l  

z ( t ) = y ’ ( f ) ;  F y - -  F,=O; 

The f i r s t  two equations in (S. 72) define y ( f )  and z ( t )  and show that a type b 
extrema1 on U (  Uo) is a continuous differentiable function which satisfies 
Euler ’s  equation. 
dependent on the position of the neighboring elements and, in general, does 
not possess  the property of maximum or minimum. 

should satisfy an additional condition on (a, b ) ,  namely the f i rs t  inequality 
in (S. 72). 

Every infinitesimal section of these extremals  is 

However, unlike the ex t remals  in c lass  C, the extremals  in c lass  U 
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The last two inequalities in (S. 72) define extremal  boundary conditions 
for  the determination of the integral constants CI and Cp. 
arbi t rary,  the f i r s t  of these inequalities is satisfied if one of the following 

Since 6 y ( a )  is 

( S .  72a) 

The second inequality defines analogous conditions at  the right end. 
Thus, if  the  solution of Euler ' s  equation is unique for each pa i r  of 
these  boundary conditions, this  equation together with (S. 7 2 a )  and 
analogous conditions on the right end may produce nine type b extremals .  
The f i r s t  two equalities in (S. 72a) constitute natural boundary conditions; 
they a r e  meaningful if y(a)--al>O o r  y(a)--a,<O, respectively. The las t  
equality in (S. 72a) follows directly f rom the f i r s t  inequality in (S. 72) ;  i t  
shows that the solution of Ehler ' s  equation for the boundary conditions 
y ( a )  = a I  and y ( b )  = b l  i s  a lso an extrema: in U. 

there  a r e  a lso mixed extremals  consisting of pieces of type a and pieces 
of type b, with the functions y ( t )  and z ( t )  suffering discontinuities a t  the 
points pi. 

In drawing up the expression for  the f i r s t  variation (S. 67) ,  w e  used the 
comparison lines u* whose functions y ( t )  and 2 ( t )  a r e  close to the original 
y ( t )  and Z ( t )  everywhere, except a t  the discontinuity points pi .  
enlarge the group of comparison l ines  by including (y, z )  lines with the 
discontinuity point displaced in an E -neighborhood of pi. Using expression 
( S .  61) for  the functional [(u) and comparing i t  with the functional along 
these lines, we obtain, a s  in the previous section, an additional necessary  
condition, which should be observed at  the discontinuity points 11,: 

c )  It follows from (S. 67) that, in addition to type a and type b extremals ,  

We now 

S ( p i ,  yi. zi)  = S ( p i ,  giv Ti). (S. 73) 

Here the pa i r s  of functions y ( i ) ,  z ( t )  and Y ( t ) ,  T ( f )  a r e  either one of the 
solutions of sys tem (S. 69)  o r  the solution of Ehler ' s  equation with z( f )=y ' ( l )  
and one of the boundary conditions a t  the discontinuity point pi,  

( S .  74) 

considered jointly with one of the analogous conditions a t  the other end 
point. 

f ( f ,  y, a0.1) exist, and are different f r o m  each other, the functional (S. 13) 
may have extremals  of two types, a and b. 

We have thus established that i f  the left and the right l imi t s  of 

Type a extremals  a r e  analogous 
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t o  the (y, 2) ext remals  of the previous section, and type b extremals  coin- 
cide with the extremals  in the c lass  of continuous functions on (a, b ) .  
There  a r e  a l so  mixed extremals  consisting of pieces of types a and b. 
Additional necessary conditions have been derived which the functional must 
satisfy in o rde r  to  have an extremum in U ,  which coincides with a weak 
local  extremum in the c lass  of continuous functions c. 

1. 4. Special cases 

We will now consider the most  character is t ic  particular ca ses  when the 
condition of existence of @(pi,  y. r/) enables us to fix the var ious dis-  
continuity points of the extremal  @ ( t )  and to determine i t s  qualitative 
behavior. 

I. 
plane. 

(S.13) exis ts  and is finite only on the continuous curves f rom U. 
if it exists, belongs to this category. 
a minimum in the c lass  C of continuous functions. 
of this case  requi res  application of the theoretical-functional techniques 
( 1  -4) described in the introduction. 

by the values of the function y(t)  at  the two ends, y ( a )  = a l ;  y ( b )  =b,.  Under 
cer ta in  conditions, this  is a smooth curve satisfying the Euler equation. 

F'unctionals with the functions f ( t ,  y, -+0,1) existing at  a finite number of 
points t=p i . a r e  close to  this type. As before, the condition of existence of 
@(t ,  y, v) l imits  the c lass  of admissible curves  to curves  f rom U on which 
y ( t )  is continuous everywhere, possibly with the exception of t=pi  (i= 1, 
2, . . . , k ) .  

The problem thus reduces to  finding an extremum in the c l a s s  of 
continuous piecewise-smooth functions and determining the extremal  
"matching" conditions of the continuous pieces a t  the ver t icals  t=pi .  
will confine our  analysis of the functionals of this type to the derivation of 
the "matching" conditions and discussion of some of the corollaries. 

These conditions a r e  determined by the propert ies  of the function 
f(t, y, p ,  1 )  for  p = O  on the straight lines t = p i .  

The functions f ( f ,  y, +-0,1) do not exist anywhere in region B in the (f, y )  

The function @(f, y, i j)  does not exist for  all t, y, r/ B ,  g # @ .  The integral 
The minimal, 

The problem thus reduces to  finding 
Fur ther  investigation 

An extremal  in general  depends on two parameters  which a r e  determined 

The minimal, if  i t  exists, a lso belongs to this set. 

We 

11. The function f ( t ,  g, p ,  1) exis ts  and is continuous on the straight line 

f = p i ,  P = O ,  r z ( P i ) < y S r i ( p i ) .  

Consider one such value f = p  (a, b) .  The function W is independent 
of sign Ay, i. e., 

W(LL Y. 1) = W(p, y, - 1 )  

(S. 75)  

178 



where c is a constant. 
By (S. 18) and (S. 75), 

/ ( u )  thus separa tes  into two independent functionals. 
extremal  is made up of two continuous pieces, which 

(S. 7 6 )  

Therefore, i t s  
a r e  ex t remals  of the 

independent functionals (S. 76), joined by a ver t ical  segment t=po .  Since 
@(p, y, c) is continuous together with i t s  derivative, these pieces a t  t = p o  
satisfy natural boundary conditions of the form 

o r  

(S. 77)  

It is remarkable  that each piece of the extremal  depends only on the 
position of one of i t s  end points, and is independent of the position Qf the 
other end. 
they satisfy Ehler's equation with boundary conditions (S. 13)  and (S. 77)  and 
Erdmann-Weierstrass conditions at  the corner  points. 
case  M ( t o ,  y) = 0 ,  conditions (S. 77) coincide with Razmadze's conditions 
for  a fixed discontinuity point 1131. 

In th i s  case, the extremal  consis ts  of n + l  continuous pieces, and each 
i - t h  piece of the extremal  coincides with the extremal  of the functional 

If the continuous pieces of the extremal  a r e  piecewise-smooth, 

In the par t icular  

The resul ts  are readily generalized to the case  of n discontinuity points. 

Each of these extremals  is a curve dependent on two parameters .  These 
parameters  a r e  determined f rom the natural boundary conditions at  the dis- 
continuity points pi-1 and p i :  

is. 79) 

For the f i r s t  and the l a s t  piece of the extremal, the two parameters  are 
determined f rom the conditions 

and 
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If the continuous sections of the extremal  function a r e  piecewise-smooth, 
they satisfy Euler ' s  differential equation f o r  the functional (S.13) and the 
Erdmann-Weierstrass conditions at the corner  points. A remarkable feature  
of the extremals  is that, with the exception of the pieces adjoining the end 
points, they a r e  independent of the values of the function y ( t )  a t  the ends 
of [a, 61. 

111. The functions f ( p i ,  y, p ,  1 )  a r e  discontinuous in p for p=O, but the 
l imits f ( p i ,  y. r t0 , l )  exist and a r e  continuous for  y e  [rz(pi), I'l(pi)]. 

Consider one such point 

t=po E (0, h ) .  

BY (s. i a )  

The function @(PO, h, .VO) in this case  no longer can be written in the .. . I .  

f o r m  (S. 75) and i ts  derivatives myo and 
These derivatives a r e  expressed by the 

- 
@yo a r e  discontinuous at  ~ o - ~ o = O  
following relations: 

for  y o - i j , , > ~ ;  - 
for  Y 0 - ~ 0 < 0 ;  

f o r  Y ~ - & > o ;  
f o r  Yo-Yo<O. 

(s. 83)  1 
We will only consider the case when the continuous pieces of the extremal 

a r e  smooth. 
in the form 

Then the f i rs t  variation of the functional (S. 83) may be written 

where 

(S. 85) 
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The necessary condition of a minimum of the functional l ( u )  is 

b l ( u )  >o. (S. 86) 

This  condition is satisfied i f  both pieces of the extremal  satisfy Euler ’s  
equation 

(S. 87) d 
lit 

F ,  - - Fy# = 0, 

and one of the following conditions is satisfied at  the discontinuity point: 

(S. 89) 

- 
Yo - Yo = 0. 

Thus, if Euler ’s  equation (S. 87) is uniquely solvable for the boundary 
conditions (S. 14), (S. 88), (S. 89), and (S. SO), the functional (S. 13) may have 
three extremals  in this case  which satisfy one of the three conditions above 
at the point where the limit Two of these extremals, 
specifically those satisfying conditions (S. 88) and (S. 89). a r e  discontinuous 
a t  this point. Unlike case  11, the continuous pieces of these extremals  a r e  
no longer independent of one another, since their  end points on the line 
t = p ~  a r e  interlinked by the inequalities in (S. 88) and (S. 89); however, 
between the l imi t s  compatible with these inequalities, the different pieces 
a r e  st i l l  independent. Condition (S. 90) shows that besides discontinuous 
extremals, a continuous extremal  may also exist in this  case, satisfying 
Ehler’s equation and the boundary conditions (S. 14). 

If there  a r e  n points pi 
the l imi t s  W ( p i , g ,  1 )  and W(pi,g,-l) exist but a r e  different, the necessary 
extremum conditions a r e  satisfied by any function y ( t )  consisting of 
continuous pieces which satisfy Euler ’s  equation, conditions (S. 1 4 )  a t  the 
ends, and one of the conditions (S. 88), (S. 89), (S. 90) a t  the points pi 
(i=o, 1, . . . , n-1) . 
function y ( t )  satisfying Euler ’s  equation on [a, 61 with boundary conditions 
(S. 14). 

W e  considered the most  character is t ic  ca ses  when the existence of the 
integrals @(pi, yi. vi) provides some indication of the qualitative behavior 
of the minimal and fixes the position of the discontinuity points. In addition 
to  cases  I- 111, there  may be mixed cases  when for  some t=pL the conditions 
of case  I1 apply, whereas for  t = p 2  the conditions of case  111. In some cases ,  
only one of the l imi t s  f (p ,  y, 
f ( p ,  9, +0,1). In this  case ,  the condition of existence of @(p, yo, YO) shows 
that the minimal y ( t )  a t  t=po may only display a positive jump satisfying 
(S. 88) o r  not jump at  all ,  i. e., yo-yo= 0. 

f(t, g, +0,1) exists. 

( i = O ,  I ,  2 , .  . . , r z - l )  on the segment [a, 61 at  which 

In particular, one of such functions is the continuous 

t 0 , l )  may exist on the ver t ical  t=po, e.g., 
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1. 5. Examples 

E x a m p l e  1. Consider the extremum of the l inear  functional 

1, 

I =  [ P  ( t , g )  t Q ( t ,g)  Y'I df, (a)  = a,, I/ (6) = 6,. (S. 91) 
a 

This  example is of independent interest  because of numerous applications. 
We have 

(S. 92) 

For  the functional (S. 91) to  attain an extremum on the function g = g ( f ) ,  

The equation of 
i t  is necessary  and sufficient for  the function of a single variable S ( f ,  y) to  
have an appropriate extremum for  every fixed t e ta ,  61. 
the extremal  i s  

W e  thus obtained the necessary and sufficient condition of extremum of 
a l inear  functional (S. 91) in the c lass  of curves  with ver t ical  segments. 
The extremal ,  in general, consists of ver t ical  segments f = a  and t=6 and 
the curve ( S .  93)  and belongs to  the se t  u. 

Equation (S. 93) a lso can be obtained by the method of variations, in the 
form of degenerate Euler ' s  equation. Using Green 's  theorem, we can 
der ive the sufficient conditions for  a s t rong local minimum on i t s  solution 
g o ( f ) .  It coincides with the condition of local minimum of S ( t ,  g) in the 
neighborhood of go for  every fixed f . 
the absolute minimal consists of pieces of these solutions and pieces of 
the boundary, joined by vertical segments. 

The construction of the absolute minimal f rom these pieces by the 
method of variations combined with Green ' s  theorem is not a simple 
process .  Our method provides an attractively simple solutions to  this  
problem: using (S. 92 )  we construct the function S ( f ,  y) and for every  fixed fc [u, 61 find the value of y ( t )  on which S ( t ,  g) attains it least  value on 
the segment rp(f)  q 4 r l  ( t ) .  

many minimals  E in Uo. 
a ze ro  closeness  function y ( f )  constructed by the above method for  an 
a rb i t r a ry  (finite) local slope Z ( f ) .  

lines (y , , }  ( U satisfying the condition 

If equation (S. 93) has several  solutions, 

The fact that S i s  independent of 2 signifies that there  a r e  infinitely 
This category includes any (g, z)  line ii $ UO with 

In other words, any sequence of polygonal 

where M>O is any number, is a minimizing sequence. 
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Let P=Q=ty .  The equation of the extremal  is t-y=O, t c ( a ,  6). Further, 
t 2  Along the extremal  s= - we have 

2 2 
S = f y -  E .  

Therefore, along a polygonal line consisting of the ver t ical  segments  
t = u  and i!=b and the s t ra ight  line (S. 93) the functional attains i ts  absolute 
minimum. The extremal  is unique. 

E x  a m p 1 e 2. (Razmadze). Consider the extremum of the functional 

(S. 94) 

The following conditions a r e  satisfied: 

f ( t ,  y, O,l)=lim ps in  exis ts  and is continuous; 
P-0  

fo r  any y and Z, so that we obtain the following equations for the two 
families of extremals  in Uo: 

y z  =n + Zkn, yy' = - 2 + 2kn, ( S .  95)  
2 2 

k=O, Cl, t 2 , .  . . 
The equations of the pieces of the extremals  belonging to  u a r e  

Y Y ' = ~ $ ~ ~ J I ,  yy '=  - z + 2 k n .  
2 2 

Integration gives 

~ 2 '  (2k f 1 ) d  + C,; Y2=(2k - 1 ) d  + C,. ( S .  96) 

k = O , & l , & 2 , .  . . 
Since the function S is independent of Ci, any extremal  may have dis-  

continuities a t  any point t ,  E [u, 61. 
The functional (S. 95) thus has  two families of extremals  in I/, consisting 

of pieces which satisfy the f i r s t  and the second equation in (S. 96), with 
a rb i t ra ry  ci, and have any number of discontinuity points with a rb i t r a ry  
abscissas .  On the f i r s t  of these two families the functional (S. 94) attains 
i t s  absolute maximum, and on the second family i t s  absolute minimum. 

E x a m p 1 e 3. Minimize the functional 

(S. 97) 
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(the problem of the least  surface of revolution). Here 

where W depends on the sign of p .  
corresponds to  type I1 of the general  case. 

Therefore, the functional (S. 97) 

Further ,  

W(y, s i g n ~ ) . ~ = l y . ~ l > O ,  

i. e., the functional (S. 97) satisfies the necessary condition of the existence 
of extremum (S. 68). 

Let u s  find a type a extremal.  We have 

(S. 98) 

W e  use the necessary and sufficient condition of a local extremum (S. 49), 
which is also valid for functionals with a discontinuous derivative F D ,  such 
a s  (S. 97). We have 

s n i n  (9, 4 =s (0, 2) = 0. 

The equation of the extremals  is 

y ( t )  ~ 0 ;  a<t<6 (S. 93) 

for  any Z .  

extremals  in  U,. 
Iy* ( t )  I <q, where q is sufficiently small ,  there  is always a polygonal l ine 
with a rb i t ra ry  section slopes 

Since z is arbi t rary,  there  exist infinitely many type a 
This is a reflection of the fact that for  any curve y * ( t )  + O ,  

y, = z ( f i )  and yi=O ( i = O ,  1 ,  . . . ,  n ) ,  

where ti is finite, such that /(y, ,)<I(y*).  Among these extremals,  there  
is one which belongs to I/, specifically 

y ( t )  0 ;  ~ ( t )  = y ' ( t ) r  0; a<t<b. ( S .  99) 

This extremal  is unique. It is continuous on (a, 6) and has discontinuities 
at t =a  and t=6. 
disks of radii  ai  and 61, joined by a tube of zero  radius. 
of the functional (S. 97) is obtained f rom (S. 40): 

The surface of revolution of this curve comprises  two 
The minimum value 

a C = O  
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Letus  now find a type b extremal. For a curve to  be such an extremal  in 
U ,  i t  is necessary and sufficient for  i t  to  be an  extremal  in the c l a s s  5: of 
continuous functions on (a, 6), and for  the functional to satisfy the f i r s t  in- 
equality in (S. 72) along this curve. 

Let u s  check this condition. 

This  condition is satisfied identically, and therefore  all extremals  in C 
a r e  a t  the s a m e  t ime type b extremals  in U. 
Eule r ‘ s  equation, whose solution in this  ca se  is described by the catenary 

The extremals  in C satisfy 

(S. 100) 

where CI and C2 are integral constants. 
f rom boundary conditions (S. 72), which in this  case  take the form 

These constants are determined 

( S .  101) 

Three  pa i r s  of boundary conditions (S, 101), together with (S. l o o ) ,  yield 
the extremals  b, b,, b,, which a r e  shown in Figure S. 2. 
y(a)  = i j ( 6 )  = O  when inserted in (S. 100) leads to  equations which a r e  unsolvable 
for  C, and Cp. 
not a catenary, i. e., does not sat isfy Euler ’s  equation. This  is the previously 
considered polygonal line ACDB, a type a extremal, which is continuous and 
differentiable on (a, 6). 

The fourth pair 

This  is a reflection of the existence of an extremal  which is 

FIGURE S. 2 

Finally, le t  u s  find mixed type extremals. Since the function S(y, z, 
sign(y’-z)) is everywhere zero  on the t axis  and is independent of z and, 
moreover, y#O for  a l l  S>O, condition (S. 73)  is satisfied if  and only if  

Thus, in addition to  type a and b extremals, there  are infinitely many 
mixed type extremals  (type c extremals)  in F igure  S. 2. However, only two 
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extremals  satisfy the sufficient conditions of minimum: the type a extremal  
by (S. 49)  and the type b extremal  which is continuous on [a, 61. 
minimum is attained on one of these curves, depending on the relative 
position of the points A and B.  

The absolute 

E x a m p 1 e 4. Find the extremal  in  u of the functional 

+ 1  

f (u)  = tZy’2dt; 
-1 (S. 102) 

We have O</(u)  <w, so  that we need only consider a minimum. The 
function W ( t ,  y, + 1 )  does not exist anywhere on [-I, 11, except a t  the point 
t = O ,  where 

W ( 0 ,  y, 1 ) s  W ( 0 ,  y, -1) E O ,  

i. e., we a r e  dealing with a type I1 functional. Therefore, the extremal  of 
functional (S. 102)  consis ts  of two continuous pieces joined a t  t = O  by a 
ver t ical  segment. The left piece is the extremal  of the functional 

- 
0 Yo 0 

11= s t2yf2dt +s W(O,y)dy= s Py’zdt 
- I  c -1 

for y(-l)=-1 and the right piece is the extremal  of the functional 

1 YO 1 

I 2 = S  t2y’2dt$J W(O,y)dy=J t2yI2dt 
0 C 0 

for  y ( l ) = l .  

Hence, their  minimum is attained on s t ra ight  lines parallel to  the t axis  
which pass  through the points (-1, -1) and (1, I ) ,  respectively. 
extremal  uo consis ts  of these s t ra ight  l ines  and a joining straight segment 
t=O, 

Each of these functionals if positive definite and vanishes for  y‘=O. 

The 

/ ( uo )  =o. 

E x a m p 1 e 5. Minimize the functional 

(S. 103) 

We have 
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i. e., f ( t ,  y, 0, 1 ) 2  exis ts  and is continuous. Moreover, 

w = y2; 

S = g2fsinz;  

Sm,,(g,e)=S(0,2nm-- 2 = -1. 

m = 0,1,2, ... 
The functional (S. 103) has countably many minimals {&)C uo. They all 

have a common ze ro  closeness  line 

f j ( f )=  0; a<t<6 (S. 104) 

with different local slopes 
n 
2 

- 
zm ( t )  = 2nm - - . (S. 105) 

This se t  contains no l ines  f rom U .  

S S. 2. FUNCTIONAL ON THE SET OF FUNCTIONS 
W I T H  A BOUNDED DERIVATIVE 

The above resu l t s  can be applied to the fundamental problem of minimizing 
the functional 

(S. 106) 

under the constraint 

y'=g(t,y,p); (S. 107) 

Ipl,<l; (S. 108) 

Y(a)=al; y(b)=b,. (S. 109) 

It i s  assumed that F(f, 9, p )  and g(t, y, p )  a r e  continuous and have continuous 
partial derivatives for  any t and y for  l p l <  1. 
for  these t, y, p 

It is moreover  assumed that 

* > O  
dP (S. 110) 

and the functions g(t, y, 1 )  and g(t, y, -1) re tain a constant sign. 

y( t ) ,  p ( t )  satisfying conditions (S. 107), (S. 108), (S. log) ,  find a pair  i j ( t ) ,  p ( t )  
on which the functional (S. 106) attains its minimum value. 
equation (S. 107) uniquely defines the function p ( t )  =g-'(f, y ( f ) ,  y'(f)). 
problem is therefore  equivalent to  minimizing the functional 

Our problem thus can be stated a s  follows: among the pa i r s  of functions 

If g ( t )  is given, 
The 
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b 

z ( y (4) = J F (f&Y’) df 
n 

y ( a )  = a,: Y (6) =b, 

on the set of functions y ( t )  with a bounded derivative 

(S. 111)  

Here 

Let u s  elucidate some properties of the se t  of comparison lines, which 

1 )  By (S. 107), (S. 108), and (S. 1 1  0), the function y ( t )  is continuous along 
is designated UP: 

the line u E UP and p ( f )  (and hence y’(f)) is bounded and may have dis-  
continuities of the f i r s t  kind. 

(t ,  y) plane whose upper boundary g = r 2 ( t )  corresponds to  the solutions of the 
equations 

2) The line UCUP belongs to a closed simply connected region G in the 

y’=g(t, g, 1 )  and y‘=g(f, y, - l ) ,  

respectively, passing through the points A ( a ,  a,) and B ( b ,  b , )  and the lower 
boundary y = r l ( t )  to  the solution of the equation y’=g(t, y, 1 )  passing through 
B and the solution of the equation y’=g(t, y, -1) passing through A .  

piecewise-smooth and may only have a finite number of discontinuities 
of the f i r s t  kind, and consequently may only contain a finite number of 
sect ions with p = l  or p=--l. 

3)  We impose an  additional res t r ic t ion on UP, namely that p ( t )  is 

Let 

( S .  114) 

be the general  integrals  of the equations 

y’=g(t, y, 1) 

y’=g(t, y, -l), 

and 

respectively. Here z and T a r e  integral constants. We have 

( S .  115) 

In virtue of the above properties of the function g ( t ,  y, p ) ,  only curve 
~=cp( t ,  T) or y=g(t,  T)passes  through each point t o ,  yo in G ,  i. e., t o  every 
point (to,%) corresponds a single pa i r  of values z and T .  
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Consider a pa i r  of piecewise-smooth functions y ( f )  E Up andq(f), 
where 1q1-<1. 
Cyn } 

We construct the following sequence of polygonal lines 
U p  : the segment [a, b] is partitioned into n intervals by the points 

a=fo< t l< .  . . <tn-l<fn=b. 
We take 

Y n  (ti) = y ( f i )  (S. 115a) 

and through each point ( t i .  y(t i ) )  pass  a pair  of curves  y-cp(f, zi) and 
y=$((t, Ti) which together with the pair y=cp(t, Ti+,), y=q( t ,  Ti+]) on ( t i ,  t i + , )  

define a region Gi of the admissible values of yn( t ) ,  which is constructed 
along the same  lines a s  the region G .  For  al l  (ti, we take 

P n = q ( f )  ( S .  1 1 6 )  

and y n ( f )  is correspondingly se t  equal to the solution of the equation 
y'=g(f ,  y, q ( f ) )  for  those t (ti. t i + ! )  where this  solution belongs toGi, and 

y n ( t ) = q ( t ,  zi+l) o r  Y n ( f ) = q ( f ,  Ti+,) (S. 1 1 7 )  

for  a l l  other t 
the condition of continuity of Y n ( f ) .  

and correspondingly (y,(t) } - u  i f  

(ti, t i+]) .  The choice of equality (S. 117)  is determined by 

We say that the sequence ( y n }  approximates to the line u UP or  { y n } - u  
n-. - 

"-.co 

y'(f) = g ( f ,  9 )  (S. 118) 

a lmost  everywhere on[a, b], and for  n-00, 

If the pair y, q does not satisfy (S. 118), we say that {yn} approximates to 
a (y, q )  line UO e Ug, o r  {yn}-uo; y ( t )  is the zero  closeness  function of the 
line UO, and q ( f )  is a local value of the parameter  p .  

We take 
(S. 120) 

T h e o r e m  1. The functional [ ( U O ) ,  Uo u:, exis ts  and may be re- 
presented in the form 

(S. 121) 
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where 
-tI=sign[y’-g(t, y, 911. 

We have 
n- 1 

where 

Yi=Y(ti); q i = q ( t i ) ;  At i=t i+l- t i ,  

f i  (ti, ti+!) is the abscissa  of the point where the straight line 

mee t s  the boundary of Gi, i. e., in tersects  the curve y=rp(t, zi+]) i f  
yi+~-y(fi)>O and the curve y=$(f,  Ti+l) i f  yi+l-y(fi)<O. 

We  have 

(S. 124) 

(S. 125) 

F r o m  (S. 122),  using (S. 124) and (S. 125), we find 
“-1 

The argument * 1 in these expressions stands for 

siW[y’(fi) -g (ti, y t  4i)l. 

In virtue of the properties of F ( t ,  y, q ) ,  y ( t ) ,  and q( t ) ,  the function 
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i s  bounded and continuous almost  everywhere on [a, b] .  Therefore, by the 
Lebesgue theorem, i t  is Riemann-integrable. The limit (S. 120), where 
I(yn)  is defined by (S. 126),  therefore exists, is equal to (S. 121) ,  and does 
not depend on the choice of the sequency {yI1)-Uo. 

C o r o l l a r y  1. If g’=g(t ,  g ,  q), the integrand in (S. 121) is equal to 
F ( t ,  g ,  q )  and, therefore, definitions (S. 106) and (S. 120) coincide on UP. 

C o r  o 11 a r y 2. Since g‘ enters  the integrand in (S. 121) in l inear  form 
f o r  g’-g(f, g ,  q)#O.  and does not appear  in the integrand at  a l l  for  
g’-g(f, g ,  q )  =O, the functional( S. 121) is continuous on Utin the sense  that for 
any given E>O there  exis ts  6>0such that 

Q. E. D. 

I I ( U ) - f ( 4  I < € ,  (S. 1 2 8 )  

According to  the lemma, 
coincide, and therefore instead of minimizing the 

i f  Ig-JI<q, 1q-ij1<6 almost  everywhere on [a, b] .  
the minimals in UP and 
functional in UP we can minimize i t  in the c lass  Ug of ( g ,  q )  lines, using 
expression (S. 1 2 1 )  for  I ( u o ) .  However, expression (S. 1 2 1 )  in i t s  original 
form is not particularly convenient for  the determination of the absolute 
minimum, since it contains the derivative of the zero closeness  function g’. 
We wi l l  adopt a different approach and t r y  to  establish a relationship between 
this  problem and the problem of minimum of I ( u o ) ,  uo U o .  To this end, 
we use  (S. 31) and Theorem 3. UP, the equation g ( t )  = 

=cp(t, T) defines a piecewise-smooth function t = t ( t )  which has  d is -  
continuities of the f i r s t  kind a t  the points t = p i  ( i =  1 ,  2, . . . , n)  corresponding 
to the sections p ( t )  = 1 of the line U, i f  any. 
single t ,  the variable T can be chosen so that t ( ~ )  is an increasing function, 
i. e., 

(S. 129) 

Along any line u 

Since each T corresponds to a 

nt 
dt 

-->O 

on the smooth sections and 

t(r+O)-f (7-0) >o ( S .  130) 

a t  the discontinuity points. 

and not on the se t  of y(z). i f  we make the following substitution of var iables  
in (S. 106):  

The functional I(u) may be considered on the set  of the functions g ( t ) .  

t = = ( f I ( T ,  9); 

(S. 131) 

7’: , 
whe;e q 1 1 ( t ,  g )  is the inverse of cp(z, t) .  
sign, i t  exis ts  and is continuous and differentiable. 

Since g ( t ,  9, 1 )  maintains a constant 

W e  have 

(S. 132) 
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where 

(S. 133) 

(S. 134) 

(S. 135) 

(S. 136) 

9 2 % .  (S. 136a) 
d.c 

Consider the se t  UT of piecewise-smooth l ines  on which the function 
y(z) i s  single-valued everywhere, except a finite number of points z=yi ,  
where y ( t )  may have discontinuities of the f i r s t  kind. 
the s e t  U' is a perfect analog of the se t  U in the ( t ,  y )  plane, as introduced 
in Chapter 11. 

In the (z, y )  plane, 

W e  have UP C u. Let u e UT. This line belongs to  U p  if 

(S. 137) 

The condition p ( t )  4 1 is satisfied automatically, in  virtue of the particular 
choice of the independent variable z. The ver t ical  segments of the line u 
in the (t, y)  plane, t = p i ,  are the solutions of the equation (S. 107) for  p =  1 .  
It follows f rom (S. 133)  that for 7j-m, we have p-I. 
expressed f rom (S. 133). 
function P(t, i). We have 

p ( z ,  y, y )  can be 
Inserting the resul t  in ( S .  135), we obtain the 

( S .  138) 

The functional /(u), Uw', is defined by (S. 132) .  Since the integrand in 
(S. 136)  coincides with the l imit  (S. 1 3 8 ) ,  and this l imit  does not depend on 
the sign of the difference yi-Ji  this definition coincides with Definition 1 
from E S. 1, and the functional I ( u ) ,  u cur, corresponds to type I of the 

general  case, when the function pP1 z y exis ts  and is continuous for  

p=O . 
functional. 

line uo 
by the equation 

( 9  3 
Therefore all the theorems formulated fo r  this case still apply to this 

We introduce the se t  of (y, Z )  l ines ui. 
U ;  in the coordinates Z, Y. 

Here Z is the local slope of the 
T o  every Z corresponds some q defined 

z=g1(z, !I> 4) .  (S. 1 3 9 )  

This  is a one-to-one correspondence, since > O  for  z=m. Since 

g,(z, y, 4 )  is continuous, we have Z d Z o  if q-qo, and vice versa .  The line 
uo EU; may therefore  be defined either by the pair  of functions (y, z ) ,  o r  

34 
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by the pair  (y, 
the parameter  

q). 
p .  By Theorem 1, we may write 

We have referred to  the function q a s  the local value of 

where c is an a rb i t r a ry  constant, or, using (S. 133) and (S. 135), 

(S. 140) 

(S. 141) 

The theorems of § S. 1 ensure a complete solution of the problem of 
minimizing Z on U'. 
to establish a relationship between the se t s  Uo and up C u{. 
is established by the following lemma. 

condition for the existence of a sequence of polygonal lines{yn}--ruo; { y n }  (up,  
i. e., a necessary and sufficient condition for uo Ut .  is that the functions 
4(t) and g( t )  satisfy the constraints 

To apply these theorems to the present case,  we have 
This relationship 

L e m m a  1. Consider a (y, q )  line uo cor;. A necessary and sufficient 

q(t) >--I; 
d-&?1(% Y7 9 )  2 0  

a t  the points of continuity of y(t) and the constraint 

(S. 143) 
(S. 144) 

at  the points of discontinuity Pi  of g(t). 

line u 
N e c e s s i t y .  1) By (S. 137) ,  the sequence Cyn) approximating a (y, q )  

Uo belongs to U p  if 

(S. 146) 

(S. 143) follows directly f rom these inequalities. 
2)  Let a t  the point t o e  (a ,  p), 

d (to) -&!I (to, y ( t o ) ,  q ( t o )  ) <o. 
Let y,, be an approximating polygonal line sufficiently close to u,  and t i  

and t i + l ,  t i < t o g t i + l ,  a r e  the partition points closest  to  t o .  We have 
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Y,+ 1 - Y; + I  = Yi + I  -.yl- Qn (t*) 'AT, = 

=[i (To)-g(To, g (To), 4 (To))+ 0 (AT,)]  &Ti .  ( S .  147) 

Choosing t~ SO that At1 is sufficiently small, Here t* e [ T i ,   ti+^], A t i = t i + l - t i .  

we find 

Yi+l-Ji+l <O. 

This  signifies that (S. 137) is not satisfied at the point ti+], i. e., for  
n>N(Ati), the sequence (yn) does not belong to  U p .  Thus, (S. 143) and 
(S. 144) a r e  necessary conditions. 

p<l is satisfied automatically on the ent i re  se t  UT (and therefore on U p  also)  
because of the par t icular  choice of the independent variable Z. 
a sequence of polygonal lines (yn} approximating a (y, q )  line uo e U ; .  
will show that for  n>N, 
(S. 146) is sat isf ies  for  n>N. 
l e t  the ze ro  closeness  function y(t)  be continuous and differentiable on 

The necessity of (S. 145) is self-evident. 
Let (S. 143), (S. 144), and (S. 145) apply. The condition Suf  f i c i e n c y . 

Construct 
We 

Now, 
(y,} (Up .  To this  end i t  suffices to  show that 

The f i r s t  condition is t rue by (S. 143). 

( t i - 1 9  ti 1 

By (S. 144) 

so  that 

Let now ~ ( r )  have a discontinuity on ( t i s ,  ti). For sufficiently la rge  n 
( smal l  Atmar),  this  is the only discontinuity on (rip,, ti). Then 

Y, -Ti = Y (P) -Y(P) fO ( A T i ) .  

where ci is the point of discontinuity of y ( t ) .  
l a rge  12, 

By (S. 145), for  sufficiently 

yi--yi>,O. 

Thus, for  n > N ,  (S. 146) is satisfied for  a l l  i=O, 1, . . . ,  n-1, n .  Hence 

A s imi la r  lemma for  the l ines  u E Ui  is proved by replacing (S. 143), 
Cy,) c UP.  

(S. 144), and (S. 145) with the following conditions: 

Q. E. D. 

(S. 148) 

(S. 149) 



at  the points where y ( t ) i s  continuous, and 

Y ( T i  +0) -y( Ti-0) LO (S. 150) 

a t  the points Ti where y(T) is discontinuous. 
Let fj, Q be a pair  of functions satisfying the condition 

and y*, q* a pair  satisfying the condition 

Here Ui , gZ(T, y, q ) ,  &(T, y, q)  are the analogs of 4 , g,, SI in the coordinates 
T,Y. 

We now prove the following theorem. 
T h e  o r e m  2. Let the (y, q )  line u" e defined by the pair  fj. 4 satisfying 

(S. 151) sat isfy conditions (S. 143), (S. 144), (S. 145). 
minimal of the functional (S. 106), i. e., 

Then E is the absolute 

/(u)=inf - I (u) .  
U € U P  

(S. 153) 

It follows from expression (S. 141) for I(u), u e U;,that E is a minimal 
on the se t  of the (y, 4) l ines  u c P o  satisfying the additional condition q2-1.  
Since this  s e t  encloses Up, we have I(E) G I ( u ) ,  

Cyn} ( UP. Thus, by definition of the lower bound, 

e UP. 
If u" satisfies (S. 144) and (S. 150). there  exis ts  a sequence {ylr}--cu",  

I(;)= inf ~ ( u ) .  
"€LIP 

Q. E. D. 
A s imi la r  proof can be given for Theorem 2*. 
T h e  o r e m 2*. If a line u* ut defined by the pair  y*, q* satisfying 

(S. 152) sat isf ies  conditions (S. 149), (S. 150), we have 

/(u*)= inf I ( u ) .  
u €LIP 

(S. 154) 

C o r o l l a r y .  Let the line u*Eu: defined by (S. 152) satisfy (S. 148), 
(S. 149), (S. 150), i. e., u* tug. 
by (S. 141), the line E does not satisfy (S. 144), (S. 145), i. e., E does not 
belong to  Ut. 

Indeed, suppose that these conditions a r e  satisfied on u" c u;. Then, by 
Theorems 2 and 2*, I (u), u CUP,  has the lower bounds I(E) and I(u*), in 
contradiction to  the definition of the lower bound. 

line E 
everywhere for  the pa i r s  g, Q and y*, q* defined by (S. 151) and (S. 152): 

Then, if  I (u")#I (u*) ,  where [(E) is defined 

The r eve r se  proposition is a l so  true. 

T h e  o r e m 3.  Let the functional (S. 106) have a minimum on the (y, q)  
ut. Furthermore,  le t  the following inequalities hold t rue  almost 
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The minimal is then a continuous piecewise-smooth function. 
Since ii E Ut, we see  that 5(t)  and i j ( f )  a r e  piecewise-continuous and, 

therefore, ii may consist only of a finite number of sections on which one 
of the following three conditions is satisfied: either 1) F’(f)-g( t ,  g, q ) > O ,  
or  2)  y ’ ( f ) - g ( f ,  y, i j ) = O ,  o r  3)  Y’(f)-g( t ,  g, q ) < O .  

By the remark  to Theorem 1, condition (S. 151) should be satisfied on 
those sections where J’-g(f, y7 i j ) > O ,  i. e., y=y” and ij=q”, but this 
contradicts (S. 155). Consequently, such sections do not exist. Similar 
argument proves that sections of type 3 do not exist either. 
we have almost everywhere on [Q, 61 

Therefore, 

ii’(t)-g(t, 5, a = o ,  (S. 156)  

i. e., ii CUP. 

be determined by ordinary classical  methods, e. g., the maximum principle. 
The minimal consists of a finite number of Ehler pieces and pieces having 
the l imit  direction p ( t )  -“ 1 .  

functions i j ( z ) ,  B(T)  obtained from (S. 151) satisfy conditions (S. 144), (S. 145). 

C o r  o 11 a r y . Since the minimal E is piecewise-smooth, it can 

T h e  o r  e m 4. 

W e  construct the following object ii: 
1. 

Let [TI, Z Z ] ~  [a, fJ1 be an isolated segment on which the 

On [a. zl], the minimal E coincides with the absolute minimal of the 
functional 

7, 

Il(ul,Yl)=J Fl(T,Y,PIdT--(% YIX ( S .  157) 

with a f r ee  right end Y I ’ ~ ( z I ) .  
2. On (zl, Q), the object ii is a (y, 4 )  line: 

(S. 158) 

3. On [Q, fJ), the object ii coincides with the absolute minimal of the 
functional 

B 

I2(uZrY2)=J ~ I ( V , P ) d ~ + Q  (%YZ)? ( S .  159) 
1. 

with a f ree  left end yz=y(zz). 
If 

(S. 160) 

the object is the absolute minimal of the functional (S. 106), i. e., 

I (Z)= inf I ( u ) .  (S. 161) 
u EUP 

P r o o f .  The functional /(E) may be written in the form 

T I  T I  

I = Fidr - @ (TI&) -k s (Ti,;) dT + 
II T I  
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Similarly, along any line u UP, 

By the conditions of the theorem, 

and therefore 

I ( U ) - / ( U )  >o. 
On the other hand, by the conditions of the theorem and by Lemma 1, we 

Q. E. D. 

s e e  that there  exists a sequence {y,,} c U p  such that I(yn) -/(E). 

in virtue of the definition of the lower bound, (S. 161)  applies. 
If tl =a or t2=b, (S. 160) is replaced only by the first or the 

second inequality, respectively . 
extrema1 pair ( i j ( z ) ,  i j ( z ) )  does not necessar i ly  coincide with g(z), q(t) on 
[TI, zz], but some of i ts  propert ies  emerge from Theorem 3.  

Therefore, 
n-ce 

R e  m a  r k . 
C o r  o 11 a r y . If (S. 160) is now satisfied at  the points TI and Tz,  the 

1. If there  exist  at  l eas t  two points z=El, t=b where 

!I(%) 'Y"(t)> (S. 1 6 2 )  

for z €[El ,  &] we have i j=g and ij=q. 
If condition (S. 160) is not satisfied at  a single point, TI say, we have 

t j ( t )>y"( t )  for z f  [TI, 721. If at  l eas t  one root E 
exists in this case, for E < t 4 < z 2  we have ij=y". Q=Q". An analogous theorem 
clearly can be proved for an isolated segment [ t l ,  t z ]  on which the functions 
y"(t) and q"(f)defined by (S. 152) satisfy (S. 149) and (S. 150). 
(S. 160)  should r eve r se  their  sign in this case. 

It follows f rom the theory that the functional (S. 106) 
on the se t  UP of functions with a bounded derivative has  (y, q )  minimals with 
a "branched" derivative, s imi la r  to the (y, z )  minimals of the simplest 
functional. 
the directions p =  -1- 1. 

2. 
[TI, TZ] of equation (S. 1 6 2 )  

Inequalities 

D i s c u  s s i o n  . 1. 

The role of the vertical  directions in this case is assumed by 

2. As for the s implest  functionals of type I (the function p F (  f, 9, +) is 

continuous for p=O,), the solution of the variational problem should not s t a r t  
with the solution of f i ler ' s  equations, i. e., we should not attempt to find a 
weak local minimal on the c lass  C,. 
function S l ( t ,  y, q )  (or  &(t, y, 4)) and to find its minima y"(z). Q"(t) for  every 
fixed z e  [u, PI. 

A better approach is to set up the 

If the functions y"(z), q(z) satisfy the conditions of Theorem 2 
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(Theorem 2*), this  completes the solution. 
a (y, q )  line Z 
If almost everywhere on [a, PI, 

The functions y"(z), g(t)  define 
on which the function (S. 106) has  an  absolute minimum. 

#-&?I (TI, i j ,  4") =o, 

we have Z tu:. 
Cyn} t U p .  

Otherwise, the pa i r  ij, tj defines a minimizing sequence 
F o r  any given E > O ,  there  exis ts  N such that for  n>N, 

I I ( u ) - I ( Z )  I < & ,  
where u is any line f rom UP. 

If the conditions of Theorem 2 are not satisfied on u" and u*, 
Theorem 4 enables us  to identify pieces of the absolute minimal on those 
segments where the corresponding conditions hold true. 
solution of the problem in this case, we have to  find the pieces of minimal on 
those sections where the conditions of Theorem 4 do not hold t rue.  These 
pieces coincide with the minimals of the corresponding functionals (S. 157) 
and (S. 159)  defined on the corresponding sections. 

U of the functional (S. 106) is piecewise-smooth when u" e Ugand it  
can be found by conventional c lass ical  methods, e. g., by Pontryagin's 
maximum principle. 

(S. 106)  with regard to  their  extremal  propert ies  a r e  the closest to  type I 
functionals of the general  case. 

However, unlike the type I functionals, functional (S. 106)  may a l so  have 
smooth Euler  minimals, i f  the conditions of Theorem 2 (Theorem 2*) a r e  
not satisfied. In this respect, functional (S. 106) is closer  to the s implest  
functional of type I1 of the general case  ( f(t, y, p, I )  has  a discontinuity of 
the f i r s t  kind for  p = O ) .  
two types: for  type I1 functionals the minimum of S along the (y, 2) line uo 
is only a necessary condition of a minimum of I(u) on the line UO, and in the 
presence of this minimal the absolute minimum may be attained on an 
ordinary Euler extremal, whereas for  the other type, a s  for  simplest 
functionals of type I, the minimum of S on a (y, q)  line u cu{ is a sufficient 
condition for  the absolute minimum of the functional on this line. 

3. 

To  obtain a complete 

4. If the l ines  u" and U* satisfy the conditions of Theorem 3, the minimal 

5. If we compare the resu l t s  with those of 5 S. 1, w e  see that the functionals 

The strongest direct  expression of this analogy is provided by Theorem 2. 

There is a highly significant difference between the 

§ S. 3. OPTIMAL PROGRAM FOR HORIZONTAL 
FLIGHT OF AN AIRCRAFT 

We will now consider the optimal th rus t  control for  the horizontal flight 
of a jet a i rc raf t  over a maximum range. 
Hibbs 1 1 5 1  and by Miele and Cicala 1141. 
assuming a l inear  dependence of thrust  on fuel consumption, 

This  problem was dealt with by 
According to  their  results, 

P = j b  (S. 163) 
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where P is the thrust, $ is the fuel consumption, j =  const is the effective 
nozzle velocity, we can reduce the original problem to extremizing a 
functional of the form 

(S .  164) 

where m is the instantaneous a i rc raf t  mass, V is the aircraft velocity, 

VI=%. 
dm 

Euler ' s  equation for  this functional degenerates to  a finite equation 

---= dA dB 0, (S. 1 6 5 )  av dm 

which in the general  case does not pass  through the given initial and terminal  
points (Vo, mo),  (Vt ,  mt )  in the ( m ,  V )  plane. 

An ingenious application of Green 's  theorem enabled Miele to  construct 
the sought solution and to show that it is made up of pieces satisfying 
equation (S. 165) o r  the conditions p=pmaxand p=O. For the case  of a non- 
l inear  dependence P=P(P)  the solution is no longer degenerate and the 
method of Lagrange's multipliers must be applied. 

approach, namely by the theory presented in I S. 1 and § S. 2. 
As in 1151, we seek a 

dependence V = V ( m )  ensuring the maximum range for  given values of mo, VO 
and m,, v,. It is shown that this problem of maximizing a functional can be 
reduced to maximization of a function of two var iables  S(m,  
every fixed m E (mo, mt) ,  where b' and p a r e  assumed independent. The 
optimal program obtained in this  way is found to be degenerate, i. e., in- 
dependent of the position of the end points (mo, VO) and (m, ,  Vt). In case  of a 
l inear  character is t ic  P=j  f3, j =  const, S is independent of f~ and the solution 
V = V ( m )  coincides with that f rom 114, 15/. If P = P ( p )  is nonlinear, the 
absolute maximum range is attained with the "pulsed thrust" program, 
which in fact constitutes the ( y ,q )  extrema1 that we mentioned before. This 
program amounts to the following: the a i rc raf t  s t a r t s  f rom the initial s ta te  
(mo, Vo)  with i t s  engine off (P=O)  or  alternatively with maximum thrust  
p=pmar until i t  reaches  some curve V=Vo(m)  in the (m,  V )  plane. 
the optimal program reduces to  an alternating succession of powered 
sections with some optimal thrust  P(p)=cons t  and coasting sections with cut 
engines (p=O, m=const). The engine is switched on wheneve.r the 
coasting velocity has  dropped to  V=vo(m) .  
should be a s  high as possible. 
deeper  is the maximum. 
reaches the line p=O (m=const) or $=Pmax passing through the point(m,, V,)  
for  VO(m,)>Vt orVo(m,)  <Vt, respectively. 

In the present section, this problem is solved by a different mathematical 

A quite general  dependence P = P ( B )  is assumed, 

V,  p) for  

After that, 

The engine switching frequency 
The higher the switching frequency, the 

This program is continued until the aircraft 
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3. 1. Statement of the problem 

The equations of motion of a jet aircraft in horizontal rect i l inear  motion 
are 

(S. 166) 

where m is the a i rc raf t  mass ,  g, is the gravitational acceleration, x is the 
horizontal coordinate of the aircraft, V is the a i rc raf t  velocity, h is the 

. dV . dm altitude of horizontal flight, x is the drag, Y is the lift,  v=- and m=-. 
d t  d t  

We adopt the following hypotheses regarding the forces  entering (S. 166) :  
1. The aerodynamic f o r c e s x  and y a r e  independent of the a i rc raf t  

X is fur thermore a 
accelerat ion (the aerodynamic lag is ignored). 
constant, X and Y are functions of velocity only. 
function of the lift Y .  

2 .  
consumption p .  

Since the altitude is 

The thrust  P is a function of the velocity V and the per-second fuel 
It may be written in the form 

P ( V ,  P) = f 1 ( V ) f z ( B ) ,  

where f ,  ( V )  is the velocity character is t ic  of thrust  - an arb i t ra ry  positive 
function; fz(j3) is the fuel consumption character is t ic  of thrust  - an increasing 
function, generally displaying the property f z ( p )  1 4 0 .  

B -0 
The physical meaning of P(v, 0) is back-pressure;  The dependence P ( h )  

is of no consequence, since 

h = const 

3.  The gravitational acceleration g, is constant. 
in fact written assuming constant g and ignoring the effects of the Ea r th ' s  
spin. The a i rc raf t  in these equations is regarded a s  a point mass .  

4. The fuel consumption $ may vary between 0 and pmau. 
Let us  formulate the boundary conditions. 

Equations (S. 1 6 6 )  a r e  

We assume that a t  the initial 
t ime t=O the a i rc raf t  m a s s  is mo and the velocity is V O .  
is chosen so that x ( O ) = O .  

The point of origin 

At the end of the flight, t = f r ,  we have 

ni=mt, V = V t ,  x=xt, 

where neither f t  nor x ,  a r e  fixed. 
functions x ( f ) ,  V ( t ) ,  m ( t ) ,  f l ( t ) ,  Y ( t )  satisfying equations (S. 116) which ensure  
a maximum range xr on the set of pentades 

Our problem is to find a sys tem of 
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satisfying (S. 166) .  
equations, i. e., the system has one degree of freedom. The las t  equation 
in (S. 166) gives an  expression for the functional t o  be maximized 

We are dealing with five unknown functions and four 

(S. 1 6 7 )  

Eliminating Y and df between the f i r s t  th ree  equations in (S. 166), we find 

( S .  168) dV 1 
[ P ( V ,  P)-X(V, m>l. -E-- 

dm mB 

The problem thus reduces to  maximizing the functional 

(S. 1679)  

under the constraints 

dV I (S. 168::;) V’= == - ;[P(V,  P)-X(  m, VI; 
0 -s P < P,,,; ( S .  1 6 9 )  

V (mJ= V,; V (m,)= V,. (S. 170 )  

Problems of this kind were previously considered in § S. 2. Here w e  
have 

V F ( m ,  V, P I = - ;  (S. 1 7 1 )  

( S .  1 7 2 )  

B 
1 

g ( m ,  V, P)=--[P(V, P)-X(m,  V)]. 
mP 

In virtue of the above properties of the function P(v, p),  

(S. 173) 

f o r  a l l  B LO, Bmaxl. 

to  replace 
To finally reduce this  problem to the form discussed in § S. 2, i t  suffices 

with an auxiliary parameter  

p = 2 L - l .  
Bmax 

Inequalities (S. 1 6 9 )  then take the form 

(S. 174) 

IPI<A (S. 175)  

and condition (S. 173) reduces to 

(S. 176) dg - > 0. 
dP 
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For p = l ,  i. e., p = p m a x ,  the derivative V'=g(m, v, p) takes on the leas t  
admissible value a t  the point ( m ,  V )  of the phase plane, and for  p = l ,  p=O i t  
takes  the la rges t  value: 

V'=g(m,  V, p) + 00 for p-0. ( S .  177)  

Physically (S. 1 7 7 )  signifies the fact that the limit value @=o corresponds 
to flight with constant mass  ( m= const), i. e., motion of the representing point 

along the ver t ical  in the phase plane ( m ,  V ) .  The 
la t te r  factor signifies that the independent variable 
m has the properties of the auxiliary variable z in- 
troduced in 5 s. 3 (constancy on the limit direction p=O). 

Let u s  now establish the boundary of the region 
B of the physically admissible values of the 
function V(m) .  The boundary is made up of 
pieces of the following lines (F igure  S. 3): 

maximum admissible angle of attack. 
is the lower limit for  the admissible values of 

Line 1: mg,-Y(V, amax) = 0 ,  where amax i s  the 
This line 

~ _ ~ .  ~ - the function V ( m ) .  
Lines 2 and 3: the ver t ical  segments m=mo m, r i i  

Q: m t  

FIGURE S. 3 and m=m[ .  
Lines 4 and 5: lines of flight with maximum 

thrust  @=pmax passing through the points (mo, V O )  and 
( m r ,  V , )  which give, respectively, the upper .and the lower limit of the ad- 
missible  values of V(m) .  

3. 2. Optimal control program 

Let us  f i r s t  determine the function S(m,  V,  9) .  Here V ( m )  is the zero 

Since the independent variable m is also the parameter ,  
c loseness  function of the sough extremal, q(m)  is the local value of the fuel 
consumption b .  
we may use expression (S. 49 )  for S .  Thus, 

V 

S = F -  W g ( n ,  V ,  3 1 - 1  W,(m, E ) ~ E ;  
C 

(S. 1 7 8 )  

(S. 179) 

Using (S. 1 7 1 )  and (S. 172),  we may write 

(S. 180) 

(S. 181) 
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or, using (S. 181), 

V 

where 

(S. 182) 

(S. 183) 

For an ideal liquid-propellant engine, j is independent of P and gives 

Let u s  find the pair  of functions v ( m ) ,  q(m)  on which S(m,  V,  q )  attains 
the ideal nozzle velocity. 

i t s  absolute minimum over  the se t  of admissible values of V and q for  
every fixed m [m,, mol. 

Writing the thrust  in the form 

we can devise an attractively simple method of solution of the las t  problem. 
In fact, the point q=?j on which S attains i t s  maximum for  any m, v 
independent of m and V coincides with the maximum of the function i ( p )  on 
O < P < f i m a s .  
character is t ics  of the thrust  program. 
f r o m  the point (0, i Z ( 0 ) )  which have at  least  one common point with the curve 
of f z ( P )  on the semi-interval(0, fimas).  In this family, we select  a ray which 
makes the la rges t  slope angle to the horizontal axis. The absc issas  41, . . . , Qt 

of the intersection points of this ray with the curve f z ( P )  on the semi- interval  
(0, Pmas) give the maximum of j ( p ) ,  i. e., S, a s  we see  f rom (S. 183). 
i f  P ( V ,  p) is representable in the form of a product f l ( V ) f z ( P ) ,  the optimal 
value p=p is independent of m and V .  

is 

F igures  4a and 4b show two alternative fuel consumption 
Draw a family of imaginary rays  

Thus, 

The optimal dependence Vo= P ( m )  is specified by the condition of 
absolute maximum of the function of single variable S ( m ,  jmax, Vo)  in B for 
every fixed m. As a necessary condition, i t  should consist of pieces of 
the boundary of B and of continuous pieces satisfying the finite equation. 
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which are joined by vertical  segments at the points m=pi (i= 1, 2, . . . , r )  where 

V , ( m )  and V*(m) being two solutions of (S. 184). 
Equation (S. 184) coincides with the equation W=O, the so-called 

' I  . singular curve' '  f rom 1141, i. e., it coincides with Eu le r ' s  degenerate 
equation fo r  the case of l inear  dependence of thrust  on fuel consumption, 
if we take P (  v, 0) =0, f l  (v) 
velocity, is assumed constant. 
simplifying assumptions adopted in 1141. Consequently, we can apply the 
resul ts  of /14/ fo r  qualitative estimate of the ze ro  closeness function and 
the optimal V=V'J(m).  
V ( m )  investigated in detail in /14/ are applicable: 

1 and jmax=V2= const, the effective nozzle 
Here the f i r s t  two conditions are the 

In other words, all the properties of the extrema1 

1) Equation (S. 184) has  two solutions: supersonic Vo=Vy(m)>a and sub- 
sonic Vo= V i  (m)  < a ,  where a is the velocity 
of sound at altitude h. Along both solutions 

- >O (motion with decreasing velocity), and 
dm 
V i  (m)  invariably passes  through the origin. 

the line V , ( m )  up to the point m=p, where 
condition (S. 185) is satisfied. 
to  coasting along the vertical  m=p until it  
reaches the line V z ( m ) ,  and then it proceeds 
along the line V2(m). 

V d V  

2 )  The optimal flight program f i r s t  follows 

Then it changes 

M m, m 
The motion f r o m  the point (mo, VO) to the 

FIGURE S. 5 solution of (S. 184) and from the la t te r  to the 
point ( m t ,  V , )  proceeds along the appropriate 
piece of the boundary of B ,  i. e., either with 

g = O  o r  with P=Pmax,  according as the points (mo, V O )  and (mt ,  V , )  are 
respectively located below o r  above the line Vo=Bo(m) (Figure S. 5). 

mind (with necessity and sufficiency) by the condition of the absolute 
maximum of the function of a single variable S ( m ,  jmax. V )  in B for every 
fixed m. 

inclined sections, which is independent of m and L' and corresponds to the 
maximum value of j .  We have a l so  obtained the function po(m)  which 
coincides with the optimal velocity r ( m )  i f  constant nozzle velocity jmax is 
assumed. 

According to  our results, the entire optimal function V=Po(m) is deter- 

We have thus obtained a local value of the fuel consumption 4" on the 

By Theorem 2, the pair  v ( m ) ,  q ( m )  defines the absolute (y, 4 )  minimal 
Uo i f  it satisfies the inequalities 

(S. 186) 

- 
LJ (P to) - F ( P -  0)  > 0, (S. 187) 

where p is the point of discontinuity of p(m) .  Inequality (S. 186) is always 
satisfied, since the resul ts  of 1141 show that i f  the minimal p ( m )  contains 
pieces of both branches, V I  (m)  and V*(m) ,  motion always proceeds f i r s t  

204 



along the supersonic branch V , ( m )  and then along the subsonic branch Vz(m)  . 
It thus remains  to  check (S. 187) .  

On As  we have mentioned before, dvo>O along both extremal  branches. 
dm 

the other hand, according to (S. 172), gC0 whenever 

P ( V ,  B ) X .  ( S .  188) 

The las t  inequality always holds true, i. e., the maximum j a s  a rule 
corresponds to  a thrust  which is g rea t e r  than the drag. 
is naturally satisfied. 
that (S. 188) may fail, i f  at all, on the supersonic branch V I  (m).  

branch - a lso  reaches i t s  maximum value (see /14/), and (S. 186)  is sat is-  

fied even i f  (S. 188) does not apply. 

It defines a ( V ,  4) line IC E UO on which the range has  its absolute maximum. 

In this case, (S. 186)  
The drag  X increases  with increasing and m, so 

But on this  
dV0 

d m  

The pair v ( m ) .  q(m)?hus constitutes the sought solution of the problem. 

Let u s  examine the physical meaning of this (V ,  q)  maximal E .  
Each approximating polygonal line y n  E U represents  motion with periodic 

thrust  switching. 
to  powered flight with fuel consumption B=q(mi), and the ver t ical  sections 
represent  coasting with the engine cut. 

m=mireaches the value vo(mi) ,  and i t  is cut off when the mass  drops to mi+l. 
The engine is switched on a total of n times. 

We r e f e r  to this program a s  "pulsed thrust" program with frequency n, 
mean velocity VO(m) ,  and power thrust q.  The ( V ,  q )  line u UO represents  
a pulsed thrust  program of infinite frequency. 

Let u s  now consider the extremal  for  various typical particular cases .  
I. There is a finite number of values iji (i= 1,2,. . . , k )  satisfying the 

condition j(P)=jmax ( a  finite number of intersection points between the ray  y 
and the character is t ic  f z ( P )  on (0, Pmax)). 
everywhere on [m,, mol. 

The inclined sections of the polygonal line yn correspond 

The engine is always switched on a s  soon a s  the coasting velocity with 

All 

The function Po(m) defined by the equation 

satisfy inequality (S. 186) 

( S .  189) 

continuously var ies  with m. Since, on the other hand, any of the optimal 
li VQ valuesq=pi=const, we have g ( m ,  V ,  q )  f-. Hence, the optimal program 
d ni 

is a (a, q )  line in the (m, v) plane, i. e., the "pulsed thrust" program of 
infinite frequency. The representing point in the ( m ,  V )  plane should 
therefore  move f rom position (mo, v o )  along the boundary of B ( p = O  or  P = B m a x )  
until it reaches the zero  closeness  line V=vo(m) .  

missible  frequency. 
equal to any one of the 4i values, and the mean velocity should coincide with 
the optimal function V=Vo(m) .  
representing point again reaches  the boundary. 
along the boundary until the terminal  position ( m t ,  V , )  is reached. 

- 

After that, the "pulsed thrust" program begins with maximum per-  
The fuel consumption on the powered sections should be 

This  program should be continued until the 
Then the motion continues 
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11. 
Some of them satisfy inequality (S. 186), whereas  others  do not satisfy 

Tee fuel consumption on the powered sections 

There is a finite number of values Qi,  i=l ,  2 , .  . . , k .  

this  inequality. 
t o  that described under I. 
should be equal to  any of the pi satisfying (S. 184). 

The sought optimal is a "pulsed thrust" program, s imilar  

111. There  is a continuum of values 

fo r  which j ( q )  =imax (the r ay  y has a common segment with $e  thrust  
Characteristic f * ( p ) ,  Figure S. 6). 
equality (S. 188), where the other par t  does not necessar i ly  satisfy this  
inequality. 

P a r t  of the segment [BO, fit] sat isf ies  in- 

FIGURE S. 6 

The particular case  E=O, L=Pmax here  corresponds to a l inear  thrust  
character is t ic .  In this case, infinitely many optimal solutions exist. They 
correspond to  "pulsed thrust" programs with infinite switching frequency 
and a common ze ro  closeness line V=ao(]man.  m), which a r e  analogous to 
those described under I, but differing in that they may have any dependence 
q ( m ) t  Bo, K] a s  long a s  i t  sa t isf ies  inequality (S. 188). A s  a par t icular  
case, we may even take a dependence q=po(m) which converts the in- 
equality in (S. 188) into equality. The "pulsed thrust" program then 
degenerates  into Hibbs's continuous control f 1 5 1  originally derived for  a 
l inear  character is t ic  P ( p ) ,  and the optimal function V ( m )  coincides with the 
ze ro  closeness  line P ( m ) .  

range is affected only by the mean velocity Vo(m),  and is insensitive to 
local deviations f rom the mean. 

a single minimal should be selected among the infinitely many optimals, on 
which the range attains a s t r ic t  maximum. 
Hibbs's continuous thrust control character is t ic .  

[& E] and therefore the function S(m, j ,  v) is independent of q ,  being a 
function of a single variable V for  every fixed m. 

The physical meaning of the multiple solutions in this  case  is that the 

However, as the switching frequency is of necessity finite in practice, 

This minimal coincides with 

In mathematical terms,  the infinity of solutions implies that j =  const on 
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